39python数据分析numpy基础之h5py读写数组数据到h5文件

2024-06-15 22:44

本文主要是介绍39python数据分析numpy基础之h5py读写数组数据到h5文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 python数据分析numpy基础之h5py读写数组数据到h5文件

HDF5(分层数据格式文件)是Hierarchical Data Format Version 5的缩写,是一种用于存储和管理大数据的文件格式。经历了20多年的发展,HDF格式的最新版本是HDF5,它包含了数据模型,库,和文件格式标准。

一个hdf5文件包括“dataset”和“group”。

HDF5 文件一般以 .h5 或者 .hdf5 作为后缀名,HDF5 文件结构中有 2 primary objects: Groups 和 Datasets。

Groups 就类似于文件夹,每个 HDF5 文件其实就是根目录 (root) group’/',可以看成目录的容器,其中可以包含一个或多个 dataset 及其它的 group。

Datasets 类似于 NumPy 中的数组 array,可以当作数组的数据集合 。

每个 dataset 可以分成两部分: 原始数据 (raw) data values 和 元数据 metadata。

1.1 安装h5py

通过pip install h5py安装h5py库。

D:\python39>pip3 install h5py
Collecting h5pyDownloading h5py-3.10.0-cp39-cp39-win_amd64.whl (2.7 MB)|████████████████████████████████| 2.7 MB 79 kB/s
Requirement already satisfied: numpy>=1.17.3 in d:\python39\lib\site-packages (from h5py) (1.26.1)
Installing collected packages: h5py
Successfully installed h5py-3.10.0
WARNING: You are using pip version 20.2.3; however, version 24.0 is available.
You should consider upgrading via the 'd:\python39\python.exe -m pip install --upgrade pip' command.

1.2 读写hdf5文件

通过h5py.File(file,mode)创建一个h5文件。通过create_dataset()将数组写到hdf5文件。

用法

h5py.File(name, mode='r')

描述

python的h5py库的File()函数创建一个h5文件。

NOmode描述1
1r默认值r,为只读,文件必须存在
2r+读写,文件必须存在
3w创建文件,如果存在则截断
4w-或x创建文件,如果存在则失败
5a读和写,如果不存在则创建

用法

create_dataset(name, shape=None, dtype=None, data=None, **kwds)

描述

python的通过h5py.File.create_dataset()向h5文件写内容。

name:数据集名称,通过此名称进行存取数组。

data:要写到h5文件的数组数据。

模式为w时,每次调用create_dataset()会截断文件,覆盖h5文件原有的内容。

模式为a时,每次调用create_dataset()不会覆盖h5文件原有内容,通过切片修改达到修改文件的效果。

示例

>>> import numpy as np
>>> import h5py
>>> ar1=np.arange(24).reshape(2,3,4)
>>> ar2=np.arange(24).reshape(1,3,8)
>>> fname1=r'E:\ls\h5f1.h5'
# h5py.File()写模式创建一个h5文件
>>> h5f1=h5py.File(fname1,mode='w')
# 将数组写到h5文件
>>> h5f1.create_dataset('ar1',data=ar1)
<HDF5 dataset "ar1": shape (2, 3, 4), type "<i4">
>>> h5f1.create_dataset('ar2',data=ar2)
<HDF5 dataset "ar2": shape (1, 3, 8), type "<i4">
# 读模式打开一个h5文件
>>> h5f1=h5py.File(fname1,mode='r')
# 通过切片获取数组
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
>>> h5f1['ar2'][:]
array([[[ 0,  1,  2,  3,  4,  5,  6,  7],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1.close()
# 切换a模式,添加数组到dataset,达到向文件添加内容的效果
>>> h5f1=h5py.File(fname1,mode='a')
# 已经存在的dataset不可再次create添加
>>> h5f1.create_dataset('ar2',data=[1,2])
Traceback (most recent call last):File "<pyshell#64>", line 1, in <module>h5f1.create_dataset('ar2',data=[1,2])File "D:\python39\lib\site-packages\h5py\_hl\group.py", line 183, in create_datasetdsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds)File "D:\python39\lib\site-packages\h5py\_hl\dataset.py", line 163, in make_new_dsetdset_id = h5d.create(parent.id, name, tid, sid, dcpl=dcpl, dapl=dapl)File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapperFile "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapperFile "h5py\h5d.pyx", line 137, in h5py.h5d.create
ValueError: Unable to synchronously create dataset (name already exists)
# 通过切片方式进行修改
>>> h5f1['ar2'][0,0]=[20,21,22,23,25,26,27,28]
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
# 添加dataset到h5文件,不会截断之前的文件内容
>>> h5f1.create_dataset('ar3',data=[1,2])
<HDF5 dataset "ar3": shape (2,), type "<i4">
>>> h5f1['ar3'][:]
array([1, 2])
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])

这篇关于39python数据分析numpy基础之h5py读写数组数据到h5文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064793

相关文章

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE