【数据挖掘】机器学习中相似性度量方法-余弦相似度

2024-06-15 22:44

本文主要是介绍【数据挖掘】机器学习中相似性度量方法-余弦相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:
首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

“相似性度量(similarity measurement)”系列文章:、
【数据挖掘】机器学习中相似性度量方法-欧式距离

Hello,大家好。

继续更新"相似性度量(similarity measurement)"系列文章,今天介绍的是余弦相似度。多的不说,少的不唠,下面开始今天的教程。

以下内容,完全是我根据参考资料和个人理解撰写出来的,不存在滥用原创的问题。

1、余弦相似度

余弦相似度(Cosine Similarity)是一种用于衡量两个非零向量之间角度 cosine 值的度量方法,以此来评估这两个向量在多维空间中的方向性相似度。它是通过计算两个向量的点积(内积)后,除以两个向量的模长(即长度)的乘积得到的。

2、计算公式

数学上,对于向量A=[ x 1 , x 2 , . . . , x n x_ 1,x_ 2,...,x_ n x1,x2,...,xn]和向量B=[ y 1 , y 2 , . . . , y n y_ 1,y_ 2,...,y_ n y1,y2,...,yn],余弦相似度cos( θ \theta θ)定义为:

S i m ( A , B ) = cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ∑ i = 1 n A i B i ∑ i = 1 n A i 2 ∑ i = 1 n B i 2 \ Sim(A,B)= \cos({\theta}) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}  Sim(A,B)=cos(θ)=A∥∥BAB=i=1nAi2 i=1nBi2 i=1nAiBi

  • A⋅B 表示向量 A 和向量 B 的点积
  • ∥𝐴∥和 ∥B∥ 分别表示向量 A 和向量 B 的模(即长度)
  • 𝜃是向量 A 和向量 B 之间的夹角

余弦相似度的值范围是 [-1, 1]:

  • cos( θ \theta θ)=1,表示向量A和B方向完全相同
  • cos( θ \theta θ)=-1,表示向量A和B方向完全相反
  • cos( θ \theta θ)=0,表示向量A和B正交,没有任何方向上的相似性

3、余弦距离

余弦距离(Cosine Distance),从余弦相似度转换为距离概念,也是用来衡量两个向量间的相似性。余弦距离定义为:
d ( A , B ) = 1 − cos ⁡ ( θ ) = 1 − A ⋅ B ∥ A ∥ ∥ B ∥ = 1 − ∑ i = 1 n A i B i ∑ i = 1 n A i 2 ∑ i = 1 n B i 2 \ d(A,B)= 1- \cos({\theta}) = 1- \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = 1- \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}  d(A,B)=1cos(θ)=1A∥∥BAB=1i=1nAi2 i=1nBi2 i=1nAiBi

通过公式可以看到,余弦距离是由1减去余弦相似度得到的。

  • 如果A和B两个向量完全相同,它们的余弦相似度是1,则余弦距离就是0,即A和B两个向量之间没有距离,完全一致
  • 如果A和B两个向量完全相反,它们的余弦相似度是-1,则余弦距离就是2,即A和B两个向量之间距离最大

4、代码实现

编写代码实现余弦相似度或余弦距离,在Python中,可以使用numpy、scipy或者sklearn来计算两个向量之间的余弦相似度或余弦距离:

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 14 22:36:45 2024@author: AIexplore微信公众号
"""import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cosineimport numpy as npdef cosine_similarity_v1(vector_a, vector_b):"""计算两个向量的余弦相似度。参数:vector_a -- 第一个向量,类型为NumPy数组或列表vector_b -- 第二个向量,类型为NumPy数组或列表返回:两个向量的余弦相似度"""# 将输入转换为NumPy数组(如果还不是的话)vector_a = np.array(vector_a)vector_b = np.array(vector_b)# 计算向量的点积dot_product = np.dot(vector_a, vector_b)# 计算向量的模长(欧几里得范数)norm_a = np.linalg.norm(vector_a)norm_b = np.linalg.norm(vector_b)# 防止除以零的错误if norm_a == 0 or norm_b == 0:return 0  # 如果任一向量为空,则认为相似度为0# 计算并返回余弦相似度return dot_product / (norm_a * norm_b)def cosine_similarity_v2(vec1, vec2):vec1 = np.array(vec1)vec2 = np.array(vec2)# 计算余弦相似度cos_sim = 1 - cosine(vec1, vec2)  # cosine函数直接返回的是距离,所以用1减去得到相似度return cos_simdef cosine_similarity_v3(vec1, vec2):vec1 = np.array([vec1])vec2 = np.array([vec2])sim = cosine_similarity(vec1, vec2)return sim[0][0]# data
vec1 = [1, 2, 3]
vec2 = [4, 5, 6]# 计算相似度
similarity = cosine_similarity_v1(vec1, vec2)
print("余弦相似度 v1:", similarity)similarity = cosine_similarity_v2(vec1, vec2)
print("余弦相似度 v2:", similarity)similarity = cosine_similarity_v3(vec1, vec2)
print("余弦相似度 v3:", similarity)

输出结果:

余弦相似度 v1: 0.9746318461970762
余弦相似度 v2: 0.9746318461970761
余弦相似度 v3: 0.9746318461970762

上面代码提供了三种实现方式,殊途同归,根据需要选择性使用。

5、应用场景

余弦相似度因其特性在多个领域和应用场景中扮演着重要角色,下面列举一些典型的应用场景:

  • 推荐系统:在电商、短视频、音乐平台等推荐系统中,通过计算用户历史偏好向量(基于用户对项目的评分或互动)和待推荐项目特征向量之间的余弦相似度,可以发现与用户兴趣最为接近的项目,从而实现个性化推荐
  • 图像识别与检索:在计算机视觉CV领域,将图像特征(如通过深度学习模型提取的特征向量等)映射到高维空间,利用余弦相似度来比较不同图像间的相似度,可以实现图像检索、图像分类以及内容相似的图像分组
  • 聚类分析:在无监督学习的聚类任务中,余弦相似度可用作距离度量,帮助将具有较高相似性的数据点聚集在一起,形成有意义的簇

当然,还可以应用到文本相似性判断、信息检索、社交网络分析、文本分类、用户行为分析等。

参考文章

[1]https://www.cnblogs.com/BlogNetSpace/p/18225493
[2]https://blog.csdn.net/Hyman_Qiu/article/details/137743190
[3]https://blog.csdn.net/qq_39780701/article/details/137007729
[4]https://www.cnblogs.com/ghj1976/p/yu-xian-xiang-shi-ducosine-similarity-xiang-guan-j.html

写在最后

作者介绍:CSDN人工智能领域优质创作者,CSDN博客专家,阿里云专家博主,阿里云技术博主,有机器学习、深度学习、OCR识别项目4年以上工作经验,专注于人工智能技术领域。会根据实际项目不定期输出一些非商业的技术,内容不限,欢迎各位朋友关注。
1、关注下方公众号,让我们共同进步。
2、需要技术指导、交流合作,点击"关于我-与我联系"添加微信交流。

在这里插入图片描述

这篇关于【数据挖掘】机器学习中相似性度量方法-余弦相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064787

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验