TGI模型- 同期群-评论文本

2024-06-15 22:12
文章标签 模型 评论 文本 tgi 同期

本文主要是介绍TGI模型- 同期群-评论文本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用户偏好分析 TGI

1.1 用户偏好分析介绍

要分析的目标,在目标群体中的均值 和 全部群体里的均值进行比较, 差的越多说明 目标群体偏好越明显

TGI(Target Group Index,目标群体指数)用于反映目标群体在特定研究范围内强势或者弱势的程度

案例的需求, 高利润的产品投放市场, 找到合适的城市进行投放, 统计不同城市高客单价用户占比的TGI ,找到TGI比较大的城市, 还需要考虑总用户数量不要过少

1.2 代码

import pandas as pd
df = pd.read_excel('data/PreferenceAnalysis.xlsx')
df.head()
df.info()
df.describe()

用户打标 判断每个用户是否属于高客单价的人群

​
df['用户ID'].nunique() # 统计不重复的用户ID数量
# 计算每个用户平均消费金额
user_df = df.groupby(['用户ID'],as_index=False)['实付金额'].mean()
user_df.columns = ['用户ID','平均支付金额']
#%%
def if_high(x):if x>50:return '高客单价'else:return '低客单价'
user_df['用户类别'] = user_df['平均支付金额'].apply(if_high)
user_df

按城市统计, 高客单价人群 低客单价人群的数量

# 针对消费流水表, 去重, 用户ID 省份 城市 进行去重, 去重之后的数据,在与前面计算出来的用户标签进行关联
df_dup = df.drop_duplicates(subset=['用户ID','省份','城市'])
​
df_merge = pd.merge(user_df,df_dup,on='用户ID',how='left')
df_merge=df_merge[['用户ID', '平均支付金额', '用户类别','省份', '城市']]
df_merge.head()
#%%
df_result = df_merge.pivot_table(index=['省份','城市'],columns='用户类别',values='用户ID',aggfunc='count')
df_result.reset_index(inplace=True)

发现数据中有缺失值, 对缺失值进行处理

df_result.info()
#%%
#  分省份,城市 统计高客单价,低客单价用户数量的时候, 发现数据中有缺失值, 缺失的原因是某些城市没有这一类型的用户, 此时可以使用0来进行填充
df_result.fillna(0,inplace=True)
df_result.info()
#%%
df_result[df_result['低客单价']==0]

计算用户总数和高客单价占比

df_result['用户总数'] = df_result['低客单价']+df_result['高客单价']
df_result['高客单价占比'] = df_result['高客单价']/df_result['用户总数']

计算TGI target Group index 目标群体指数

df_result.info()
#%%
df_result['高客单价'].sum()/df_result['用户总数'].sum()
#%%
df_result['整体高客单价占比'] = df_result['高客单价'].sum()/df_result['用户总数'].sum()
#%%
df_result['TGI'] = df_result['高客单价占比']/df_result['整体高客单价占比'] *100

过滤掉用户数量太少的城市, 给出结论

user_count_mean = df_result['用户总数'].mean()
df_result[df_result['用户总数']>user_count_mean].sort_values(by='TGI',ascending=False)

同期群分析

使用场景

  • 电商场景:比较不同月份客群的留存情况, 需要比较的是过了一个月(+1月)留存率,过了两个月(+2月)留存率....

  • 金融信贷的场景:比较不同月份客群的违约情况, 需要比较的是过了一个月(+1月)违约率,过了两个月(+2月)违约率....

  • 不能直接使用当前月份的数据直接做对比

使用同期群分析的时候, 周期可以调整, 指标可以换,可以把每一月份的数据按照其它维度进行拆解

  • 比较客群留存情况把渠道考虑进来

案例: 计算了用户留存情况

  • 每个月新增的用户, 当前有购买的用户ID - 之前月份也出现过的用户ID

  • 留存使用复购来表示

评论文本分析

基本数据的处理

  • 从评星中获取好评中评差评分类

  • 从评价的时间中, 截取年月的数据

  • 评论文本内容, 进行分词, 统计不同单词出现的次数(计算词频)

    • 中文的评论, 分词是需要处理的部分, 可以使用 jieba这个库对中文进行分词

    • 英文 词形还原过程 given → give been → be 可以使用NLTK库

    • 无论中文/英文都要处理的 去停用词 stopwords 没有意义的连词,代词,介词

      • 英文 of the

      • 中文 的地 得 ...

      • 可以从网上下载停用词表

      • 统计词频的时候不统计停用词

从评论的数量, 判断出销量,按照时间的维度, 绘制折线图, 通过评论数量的波动, 发现销量的变化规律

从评论的词频统计中, 可以知道

  • 如果是差评, 大家都在吐槽什么, 发现产品的缺点

  • 如果是好评, 大家都在夸什么

这篇关于TGI模型- 同期群-评论文本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064719

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll