【Mongodb-01】Mongodb亿级数据性能测试和压测

2024-06-15 21:52

本文主要是介绍【Mongodb-01】Mongodb亿级数据性能测试和压测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

mongodb数据性能测试

  • 一,mongodb数据性能测试
        • 1,mongodb数据库创建和索引设置
        • 2,线程池+批量方式插入数据
        • 3,一千万数据性能测试
        • 4,两千万数据性能测试
        • 5,五千万数据性能测试
        • 6,一亿条数据性能测试
        • 7,压测
        • 8,总结

一,mongodb数据性能测试

如需转载,请标明出处:https://zhenghuisheng.blog.csdn.net/article/details/139505973

之前公司将用户的游戏数据存储在mysql中,就是直接将json数据存储到mysql数据库里面,几个月不到,数据库里面已经有两亿条数据,而且每行中每个json数据量也比较大,导致占用的磁盘容量也比较大,因此为了解决mysql带来多方面的瓶颈,最终选择使用mongodb来代替mysql。为了测试mongodbdb的性能以及是否满足需求,因此做了以下测试,对mongodb在高流量时验证其增删改查的效率,以及对其进行压测

服务器配置:2核4g轻量级服务器 磁盘容量 70GB

每条数据大概在500个字节,索引有一个id主键索引,还有一个parentId和category的联合唯一索引,这里两个字段能保证唯一性,因此用唯一索引效率更优

1,mongodb数据库创建和索引设置

首先在Java代码中创建一个实体类,用这个类作为json对象插入到文档中即可。

@Data
public class Archive {private String id;//账号idprivate String parentId;private String category;private String content;
}

随后在mongodb中创建一个数据库,然后再该库下面建立一个名为 archive 的集合,mongodb的集合就是类似于mysql的表,两者概念是一样的。由于后期数据量可能非常大,因此根据mongodb官方文档所说,在数据插入前,尽量提前建立索引,为了满足业务需求,这里选择创建一个联合索引,由于我这边业务能保证要加索引的两个字段的唯一性,因此选择直接添加唯一索引

db.users.createIndex({parentId: 1,category:1}, {unique: true})

如果navicate操作不方便的话,可以安装一个 Mongodb Compass 可视化工具,如下图,很多操作都是可以在这个可视化图形界面上面直接操作的
在这里插入图片描述

2,线程池+批量方式插入数据

由于这边主要是io操作将数据插入,不需要计算之类的,因此选择使用io密集型线程池,接下来自定义一个线程池

@Slf4j
public class ThreadPoolUtil {public static ThreadPoolExecutor pool = null;public static synchronized ThreadPoolExecutor getThreadPool() {if (pool == null) {//获取当前机器的cpuint cpuNum = Runtime.getRuntime().availableProcessors();int maximumPoolSize = cpuNum * 2 ;pool = new ThreadPoolExecutor(maximumPoolSize - 2,maximumPoolSize,5L,   //5sTimeUnit.SECONDS,new LinkedBlockingQueue<>(),  //数组有界队列Executors.defaultThreadFactory(), //默认的线程工厂new ThreadPoolExecutor.AbortPolicy());  //直接抛异常,默认异常}return pool;}
}

第二步就是定义一个线程任务,到时将任务丢到线程池里面,其代码如下,该任务实现Callable接口,每个线程插入10万条,每次批量插入100条数据,大概就是需要1000次

@Data
public class ArchiveTask implements Callable {private MongoTemplate mongoTemplate;public ArchiveTask(MongoTemplate mongoTemplate){this.mongoTemplate = mongoTemplate;}@Overridepublic Object call() throws Exception {List<Archive> list = new ArrayList<>();for (int i = 1; i <= 100000; i++) {Archive archive = new Archive();archive.setCategory("score");archive.setId(SnowflakeUtils.nextOrderId());archive.setParentId(SnowflakeUtils.nextOrderId());Map<String,String> map = new HashMap<>();StringBuilder sb = new StringBuilder();for (int j = 0; j < 15; j++) {sb.append(UUID.randomUUID());}map.put("key" + i, sb.toString());archive.setContent(JSON.toJSONString(map));list.add(archive);if (i%100 == 0){mongoTemplate.insertAll(list);list.clear();	//手动gc,100个对象没被引用会被回收list = new ArrayList<>();}}return null;}
}

最后定义一个测试类或者一个接口,我这边使用接口,部分代码如下,循环100次,就是会创建100个线程任务,随后将这个线程任务丢到线程池中,100乘以100000就是1千万条数据

@Resource
private MongoTemplate mongoTemplate;
static ThreadPoolExecutor threadPool = ThreadPoolUtil.getThreadPool();
@GetMapping("/add")
public void test(){for (int i = 0; i < 100; i++) {ArchiveTask archiveTask = new ArchiveTask(mongoTemplate);threadPool.submit(archiveTask);}log.info("数据添加完成");
}
3,一千万数据性能测试

mongodb性能测试,此时archive 集合中已有10134114条数据,平均每条数据大小674字节,1千多万条,此时的存储大小为5.5个g,索引的总大小为459m

接下来通过唯一索引查询一条数据,这里直接通过parentId查询一条数据,此时数据还是在不断插入的

db.archive.find({parentId:"2405291858848274156091867143"})

是的,如下图所示,1000多万条数据里面查询,只需要25ms即可将数据放回,当然这里没有在高流量的情况下进行压测。

在这里插入图片描述

4,两千万数据性能测试

此时archive集合来到了两千万条,每条数据和之前一样,平均大小是674字节,数据总大小来到了10.92G,内存大小12.65g,索引总大小是913m
在这里插入图片描述

接下来测试查询效率,依旧使用上面的这个parentId,由于设置的是parentId+category的联合唯一索引,接下来两个参数一起查

db.archive.find({parentId:"2405291858848274156091867143",category:"score"})

2000万的数据查询结果如下,只需要21ms,和上面的25ms慢了将近4ms,但是这4ms可以忽略

在这里插入图片描述

5,五千万数据性能测试

由于70G的磁盘容量已经只剩48G,因此在content字段将500字节的值调小,调整到150个字节,以便能插入更多数据。将上面的StringBuilder拼接的15个uuid改成1个uuid

map.put("key" + i,UUID.randomUUID().toString());

此时数据来到50245694条数据,每条数据平均大小372kb,总存储大小12.66g,内存中的总大小17.45g,索引大小目前只有2.8g

在这里插入图片描述

为了保证拿到的parentId是一次没有查询过的,手动的插入一批数据,手动单条插入20条数据,耗时600ms,在插入数据时会改变索引,插入数据会稍微慢些。此时的插入操作都是在多线程插入大量数据的时候测试的

db.archive.insertOne({parentId:"2024111222337",category:"score1",content:"cbasbsadhpasdbsaodgs"})
db.archive.insertOne({parentId:"2024111222337",category:"score2",content:"cbasbsadhpasdbsaodgs"})
....

此时第一次查询这条数据,共耗时153ms,共查出20条数据

在这里插入图片描述

再第二次查询之后,花费78ms,内部应该也是会将查询结果加入到缓存中,方便第二次查询

在这里插入图片描述

在上面的插入操作中由于会破坏到索引结构,因此耗时久一点。接下来看这个更新操作,

db.archive.updateOne({ parentId: "2024111222337",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

其结果如下,更新了一条数据,只花费了13毫秒的时间,因此更新操作速度是很快的。由于这里每一条数据都是唯一数据,因此不测试批量更新

在这里插入图片描述

最后测试删除数据,将这20条数据全部删除,总共花费18毫秒

在这里插入图片描述

6,一亿条数据性能测试

数据通过多线程+批量插入的方式来到一亿条,存储大小15.5g,索引长度是6g

db.archive.countDocuments()  //查询共有多少条数据
100082694

在这里插入图片描述

接下来往里面重新插入一部分数据,往里面插入20条数据,大概花费160多ms,插入数据会导致索引重构,所以耗时久一些,批量插入性能会更快。重新插入的数据可以保证这条数据没被查过,并且知道parentId是什么

db.archive.insertOne({parentId:"20240531101059",category:"score1",content:"abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy"})
....

接下来测试查询数据,只需要19ms

db.archive.find({parentId:"20240531101054"},{parentId:1,category:1}) //只返回部分字段
db.archive.find({parentId:"20240531101058"})

在这里插入图片描述

更新数据如下,只需要10ms

db.archive.updateOne({ parentId: "20240531101059",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

在这里插入图片描述

7,压测

以下压测都是数据达到1亿之后进行测试的,并且都是使用的2核4g的服务器

在1s内同时1000个线程插入数据,每个线程插入20条数据,中位数24,吞吐量391

在这里插入图片描述

在1s内10000个线程插入数据,也是每个线程批量插入20条数据,可以发现就算是2核4g这么垃圾的轻量级服务器,10000qps也是毫无压力的

在这里插入图片描述

插入数据会破坏索引,相对于修改和查询是更慢的,接下来测试1s内10000个线程同时执行增改查,吞吐量可以达到2251.7

在这里插入图片描述

部分代码片段如下,让10000个线程随机的执行增改查的操作,在1s内是毫无压力的

在这里插入图片描述

8,总结

通过上面的数据以及mongodb的响应来看,mongodb的性能还是非常不错的。看看GPT对这种数据的评价,gpt也认为mongodb是非常合适的。当然不管什么数据和业务,只要其本质是 json 数据,不管json内部结构多复杂,用mongodb都是非常合适的。mongodb还适合存一些订单数据,地理数据,大数据等等,其应用范围是非常广泛的

在这里插入图片描述

这篇关于【Mongodb-01】Mongodb亿级数据性能测试和压测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064679

相关文章

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Jmeter如何向数据库批量插入数据

《Jmeter如何向数据库批量插入数据》:本文主要介绍Jmeter如何向数据库批量插入数据方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Jmeter向数据库批量插入数据Jmeter向mysql数据库中插入数据的入门操作接下来做一下各个元件的配置总结Jmete

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2