代码随想录算法训练营第39天(py)| 动态规划 | 62.不同路径、 63. 不同路径 II

2024-06-15 13:44

本文主要是介绍代码随想录算法训练营第39天(py)| 动态规划 | 62.不同路径、 63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

力扣链接
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?
在这里插入图片描述

思路

经典五步走,没啥好说的

class Solution:def uniquePaths(self, m: int, n: int) -> int:# 1.确定dp数组含义:表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。# 2.确定递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]# 3.初始化:左边和上边的元素全是1# 4.遍历顺序:从左到右,从上到下dp = [[0]*n for _ in range(m)] #创建m*n全0数组for i in range(m):dp[i][0] = 1for j in range(n):dp[0][j] = 1for i in range(1,m):for j in range(1,n):dp[i][j] = dp[i - 1][j] + dp[i][j - 1]return dp[-1][-1]

63. 不同路径 II

力扣链接
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

思路

和上一题的区别在于多了障碍物
递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1],(i, j)如果就是障碍的话应该就保持初始状态
初始化:左边和上边的元素全是1,但障碍之后的元素全是0

class Solution:def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:# 1.确定dp数组含义:表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。# 2.确定递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1],(i, j)如果就是障碍的话应该就保持初始状态# 3.初始化:左边和上边的元素全是1,但障碍之后的元素全是0# 4.遍历顺序:从左到右,从上到下m = len(obstacleGrid)n = len(obstacleGrid[0])dp = [[0]*n for _ in range(m)] #创建m*n全0数组for i in range(m):if obstacleGrid[i][0] == 0: # 如果没障碍则赋值1dp[i][0] = 1else: # 如果有障碍则停止赋值breakfor j in range(n):if obstacleGrid[0][j] == 0: # 如果没障碍则赋值1dp[0][j] = 1else: # 如果有障碍则停止赋值breakfor i in range(1,m):for j in range(1,n):if obstacleGrid[i][j] == 0:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]return dp[-1][-1]

这篇关于代码随想录算法训练营第39天(py)| 动态规划 | 62.不同路径、 63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063619

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表