Opencv 图像增强算法 图像检测结果

2024-06-15 13:08

本文主要是介绍Opencv 图像增强算法 图像检测结果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本code通过直方图变换增强了图像对比度,实现了单通道图像增强。将图像灰度阈值拉伸到0-255,图像检测结果见底部

Keywords: 图像增强 增强对比度 直方图变换

[cpp] view plain copy print ?
  1. int ImageStretchByHistogram(IplImage *src1,IplImage *dst1)  
  2. /************************************************* 
  3. Function:      通过直方图变换进行图像增强,将图像灰度的域值拉伸到0-255 
  4. src1:               单通道灰度图像                   
  5. dst1:              同样大小的单通道灰度图像  
  6. *************************************************/  
  7. {  
  8.     assert(src1->width==dst1->width);  
  9.     double p[256],p1[256],num[256];  
  10.       
  11.     memset(p,0,sizeof(p));  
  12.     memset(p1,0,sizeof(p1));  
  13.     memset(num,0,sizeof(num));  
  14.     int height=src1->height;  
  15.     int width=src1->width;  
  16.     long wMulh = height * width;  
  17.       
  18.     //statistics   
  19.     for(int x=0;x<src1->width;x++)  
  20.     {  
  21.         for(int y=0;y<src1-> height;y++){  
  22.             uchar v=((uchar*)(src1->imageData + src1->widthStep*y))[x];  
  23.                 num[v]++;  
  24.         }  
  25.     }  
  26.     //calculate probability   
  27.     for(int i=0;i<256;i++)  
  28.     {  
  29.         p[i]=num[i]/wMulh;  
  30.     }  
  31.   
  32.     //p1[i]=sum(p[j]);  j<=i;   
  33.     for(int i=0;i<256;i++)  
  34.     {  
  35.         for(int k=0;k<=i;k++)  
  36.             p1[i]+=p[k];  
  37.     }  
  38.   
  39.     // histogram transformation   
  40.     for(int x=0;x<src1->width;x++)  
  41.     {  
  42.         for(int y=0;y<src1-> height;y++){  
  43.             uchar v=((uchar*)(src1->imageData + src1->widthStep*y))[x];  
  44.                 ((uchar*)(dst1->imageData + dst1->widthStep*y))[x]= p1[v]*255+0.5;              
  45.         }  
  46.     }  
  47.     return 0;  
  48. }  
  49.   
  50. void CCVMFCView::OnImageAdjustContrast()  
  51. {  
  52.     if(workImg->nChannels>1)  
  53.         OnColorToGray();  
  54.     Invalidate();  
  55.     dst=cvCreateImage(cvGetSize(workImg),workImg->depth,workImg->nChannels);  
  56.     ImageStretchByHistogram(workImg,dst);  
  57.     m_dibFlag=imageReplace(dst,&workImg);  
  58.     Invalidate();  
  59. }  
int ImageStretchByHistogram(IplImage *src1,IplImage *dst1)
/*************************************************
Function:      通过直方图变换进行图像增强,将图像灰度的域值拉伸到0-255
src1:               单通道灰度图像                  
dst1:              同样大小的单通道灰度图像 
*************************************************/
{
assert(src1->width==dst1->width);
double p[256],p1[256],num[256];
memset(p,0,sizeof(p));
memset(p1,0,sizeof(p1));
memset(num,0,sizeof(num));
int height=src1->height;
int width=src1->width;
long wMulh = height * width;
//statistics
for(int x=0;x<src1->width;x++)
{
for(int y=0;y<src1-> height;y++){
uchar v=((uchar*)(src1->imageData + src1->widthStep*y))[x];
num[v]++;
}
}
//calculate probability
for(int i=0;i<256;i++)
{
p[i]=num[i]/wMulh;
}
//p1[i]=sum(p[j]);	j<=i;
for(int i=0;i<256;i++)
{
for(int k=0;k<=i;k++)
p1[i]+=p[k];
}
// histogram transformation
for(int x=0;x<src1->width;x++)
{
for(int y=0;y<src1-> height;y++){
uchar v=((uchar*)(src1->imageData + src1->widthStep*y))[x];
((uchar*)(dst1->imageData + dst1->widthStep*y))[x]= p1[v]*255+0.5;            
}
}
return 0;
}
void CCVMFCView::OnImageAdjustContrast()
{
if(workImg->nChannels>1)
OnColorToGray();
Invalidate();
dst=cvCreateImage(cvGetSize(workImg),workImg->depth,workImg->nChannels);
ImageStretchByHistogram(workImg,dst);
m_dibFlag=imageReplace(dst,&workImg);
Invalidate();
}

Experiment Result:

原图灰度化

                                    原图灰度化

检测结果1

                                     检测结果1

灰度化并增强对比度

                                灰度化并增强对比度

检测结果2

                                   检测结果2

这篇关于Opencv 图像增强算法 图像检测结果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063540

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学