「动态规划」买卖股票的最佳时机,如何处理多笔交易?

2024-06-15 05:12

本文主要是介绍「动态规划」买卖股票的最佳时机,如何处理多笔交易?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

188. 买卖股票的最佳时机 IVicon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/

给你一个整数数组prices和一个整数k,其中prices[i]是某支给定的股票在第i天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成k笔交易。也就是说,你最多可以买k次,卖k次。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  1. 输入:k = 2,prices = [2,4,1],输出:2,解释:在第1天(股票价格 = 2)的时候买入,在第2天(股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4 - 2 = 2。
  2. 输入:k = 2,prices = [3,2,6,5,0,3],输出:7,解释:在第2天(股票价格 = 2)的时候买入,在第3天(股票价格 = 6)的时候卖出,这笔交易所能获得利润 = 6 - 2 = 4。随后,在第5天(股票价格 = 0)的时候买入,在第6天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3 - 0 = 3。

提示:1 <= k <= 100,1 <= prices.length <= 1000,0 <= prices[i] <= 1000。


我们用动态规划的思想来解决这个问题。

确定状态表示:根据经验和题目要求,我们把状态细分为:

  • 我们用f[i][j]表示:在第i天结束时,处于买入状态下,总共交易j次,此时的最大利润。
  • 我们用g[i][j]表示:在第i天结束时,处于卖出状态下,总共交易j次,此时的最大利润。

解释一下上面出现的名词。如果我们手里有股票,我们称当前处于买入状态下;如果我们手里没有股票,我们称当前处于卖出状态下。一次完整的买入持有到卖出称为一笔交易,也就是说,一开始的交易次数为0,在每次卖出时交易次数加1。每次买入股票会让利润减少股票在当天的价格,卖出股票会让利润增加股票在当天的价格。在状态表示中,f和g分别表示买入和卖出状态,i表示天数,j表示交易次数,f[i][j]和g[i][j]表示最大利润。

推导状态转移方程:我们需要考虑最近的一步,即第i - 1天的状态和交易次数。

首先考虑f[i][j],即在第i天结束时处于买入状态下,且交易了j次。

  • 如果在第i - 1天结束时,处于买入状态下,且交易了j次,此时的利润是f[i - 1][j],那么只需要在第i天什么都不做,在第i天结束时,依然处于买入状态下,且交易了j次,利润不变,依然是f[i - 1][j]。
  • 如果在第i - 1天结束时,处于卖出状态下,且交易了j次,此时的利润是g[i - 1][j],那么只需要在第i天买入股票,在第i天结束时,就会处于买入状态下,且交易了j次,利润减少股票在第i天的价格,即g[i - 1][j] - prices[i]。

由于f[i][j]表示最大利润,所以取上面2种情况的较大值,即f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i])。

接着考虑g[i][j],即在第i天结束时处于卖出状态下,且交易了j次。

  • 如果在第i - 1天结束时,处于买入状态下,且交易了j - 1次,此时的利润是f[i - 1][j - 1],那么只需要在第i天卖出股票,在第i天结束时,就会处于卖出状态下,交易次数加1,即交易了j次,利润增加股票在第i天的价格,即f[i - 1][j - 1] + prices[i]。
  • 如果在第i - 1天结束时,处于卖出状态下,且交易了j次,此时的利润是g[i - 1][j],那么只需要在第i天什么都不做,在第i天结束时,依然处于卖出状态下,且交易了j次,利润不变,依然是g[i - 1][j]。

由于g[i][j]表示最大利润,所以取上面2种情况的较大值,即g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。

综上所述:f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]),g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])

初始化:根据状态转移方程,

  • 计算f[i][j]时,当i = 0时会越界。
  • 计算g[i][j]时,当i = 0或j = 0时会越界。

所以,我们要初始化相应的位置。容易想到:

  • f[0][0]表示在第0天结束时,处于买入状态下,此时的最大利润。一开始利润是0,在第0天买入股票,显然f[0][0] = -prices[0]。
  • g[0][0]表示在第0天结束时,处于卖出状态下,此时的最大利润。一开始利润是0,在第0天什么都不做,显然g[0][0] = 0。

接着考虑f[0][j],其中j > 0。j > 0说明交易次数至少是1次,也就是说在第0天一定做出了买入并且立刻卖出股票的操作。然而这种操作是没有意义的,因为浪费了交易次数,并不会增加最大利润。观察状态转移方程,发现不管是f[i][j]还是g[i][j],最终都是对2个值求max。要想不影响到计算结果,我们要对f[0][j],其中j > 0的位置的值都初始化为-∞。同理g[0][j],其中j > 0的位置的值也要初始化为-∞。考虑到状态转移方程中,有g[i - 1][j] - prices[i]这样有溢出风险的计算,所以不能简单地用INT_MIN表示-∞,而要用-0x3f3f3f3f。

再考虑g[i][0],其中i > 0。观察状态转移方程:g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。为什么g[i][0],其中i > 0的位置会越界呢?因为方程中含有f[i - 1][j - 1],当j = 0时,j - 1 = -1,不存在交易次数为-1的情况。所以,我们需要判断一下,当j - 1 = -1时,这种情况不存在,相当于求max的2项中,前一项不存在,那么就只剩下后一项,即g[i - 1][j],即此时g[i][j] = g[i - 1][j]。只有当j - 1 >= 0时,求max的2项都有意义,此时才计算g[i][j] = max(f[i - 1][j - 1] + prices[i], g[i - 1][j])。也就是说,先让g[i][j] = g[i - 1][j],接着判断j - 1是否大于-1,即j是否大于0,如果判断成立,再让g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i])。

综上所述:初始化需要注意以下几点:f[0][0] = -prices[0];g[0][0] = 0;f[0][j] = g[0][j] = -0x3f3f3f3f,其中j > 0;当i > 0时,先让g[i][j] = g[i - 1][j],接着判断j - 1是否大于-1,即j是否大于0,如果判断成立,再让g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i])。只需做到以上几点,就不会越界。

填表顺序:观察状态转移方程,显然我们要沿着i和j增大的方向同时填f表和g表

返回值:假设总共有n天,最多完成k笔交易。对于第i天,i的范围是[0, n - 1]。根据题目要求,我们要返回的是最后一天结束后的最大利润,即第n - 1天结束后的最大利润。可以确定,如果要求最大利润,第n - 1天结束后一定要处于卖出状态下,否则在第n - 1天卖出股票可以获得更多利润。另外,并不确定第n - 1天结束后的交易次数。根据状态表示,我们要返回的是g[n - 1][j]的最大值,其中j的范围是[0, k]

细节问题:由于i的范围是[0, n - 1],j的范围是[0, k],所以f表和g表的规模都是n x (k + 1)。另外,交易次数不会超过天数的一半,所以要先计算k = min(k, n / 2)

时间复杂度:O(N^2),空间复杂度:O(N^2)。最坏情况是k刚好是n的一半。

class Solution {
public:int maxProfit(int k, vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 交易次数不会超过天数的一半k = min(k, n / 2);// 创建dp表vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++) {for (int j = 0; j <= k; j++) {f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j > 0) {g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}}// 返回结果return *max_element(g[n - 1].begin(), g[n - 1].end());}
};

123. 买卖股票的最佳时机 IIIicon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/

给定一个数组,它的第i个元素是一支给定的股票在第i天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成两笔交易。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  1. 输入:prices = [3,3,5,0,0,3,1,4],输出:6,解释:在第4天(股票价格 = 0)的时候买入,在第6天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3 - 0 = 3 。随后,在第7天(股票价格 = 1)的时候买入,在第8天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4 - 1 = 3。
  2. 输入:prices = [1,2,3,4,5],输出:4,解释:在第1天(股票价格 = 1)的时候买入,在第5天 (股票价格 = 5)的时候卖出,这笔交易所能获得利润 = 5 - 1 = 4。注意你不能在第1天和第2天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
  3. 输入:prices = [7,6,4,3,1],输出:0,解释:在这个情况下,没有交易完成,所以最大利润为0。
  4. 输入:prices = [1],输出:0

提示:1 <= prices.length <= 10^5,0 <= prices[i] <= 10^5。


这道题是上道题在k = 2时的特殊情况,我们只需要复用上道题的代码就行了。当然,感兴趣的话,你也可以用动态规划的思想来分析分析。

class Solution {
public:int maxProfit(vector<int>& prices) { return maxProfit(2, prices); }private:int maxProfit(int k, vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 交易次数不会超过天数的一半k = min(k, n / 2);// 创建dp表vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++) {for (int j = 0; j <= k; j++) {f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j > 0) {g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}}// 返回结果return *max_element(g[n - 1].begin(), g[n - 1].end());}
};

这篇关于「动态规划」买卖股票的最佳时机,如何处理多笔交易?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062513

相关文章

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作