【CS.AL】算法复杂度分析 —— 渐进符号表示法

2024-06-15 04:52

本文主要是介绍【CS.AL】算法复杂度分析 —— 渐进符号表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 概述
    • 2 渐进符号详解
      • 2.1 大O符号(O)
      • 2.2 Ω符号(Ω)
      • 2.3 Θ符号(Θ)
      • 2.4 o符号(o)
      • 2.5 ω符号(ω)
    • 3 具体例子
      • 3.1 插入排序(Insertion Sort)
      • 3.2 二叉搜索树(Binary Search Tree)

在这里插入图片描述

1000.01.CS.AL.1.3-算法基础-渐进符号表示法-Created: 2024-06-13.Thursday17:38

1 概述

渐进符号表示法用于描述算法的时间复杂度和空间复杂度,衡量算法的性能。它可以帮助我们分析和比较不同算法的效率,尤其是当输入规模变大时。常见的渐进符号包括大O符号(O)、Ω符号(Ω)、Θ符号(Θ)、o符号(o)和ω符号(ω)。

2 渐进符号详解

2.1 大O符号(O)

大O符号(Big O Notation) 用于描述算法在最坏情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率上限。它帮助我们理解算法的效率上限。

定义:算法的时间复杂度为O(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≤ c * f(n)。

示例

  • 对于线性时间复杂度的算法,如简单的遍历数组,时间复杂度为O(n)。
  • 对于二分查找算法,时间复杂度为O(log n)。

表示法

  • O(1):常数时间复杂度。
  • O(n):线性时间复杂度。
  • O(n²):平方时间复杂度。
  • O(log n):对数时间复杂度。
  • O(n log n):线性对数时间复杂度。

2.2 Ω符号(Ω)

Ω符号(Big Omega Notation) 用于描述算法在最好情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率下限。它帮助我们理解算法的最低效率。

定义:算法的时间复杂度为Ω(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≥ c * f(n)。

示例

  • 对于二分查找算法,最好情况是在第一次比较时就找到目标元素,其时间复杂度为Ω(1)。
  • 对于快速排序算法,最好情况是每次都能均匀地将数组分成两部分,其时间复杂度为Ω(n log n)。

表示法

  • Ω(1):常数时间复杂度。
  • Ω(n):线性时间复杂度。
  • Ω(n²):平方时间复杂度。

2.3 Θ符号(Θ)

Θ符号(Big Theta Notation) 用于描述算法在平均情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率的紧确界限。它帮助我们理解算法的精确效率。

定义:算法的时间复杂度为Θ(f(n)),如果存在正数c1、c2和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足c1 * f(n) ≤ T(n) ≤ c2 * f(n)。

示例

  • 对于简单的遍历数组,时间复杂度为Θ(n)。
  • 对于快速排序算法,平均情况时间复杂度为Θ(n log n)。

表示法

  • Θ(1):常数时间复杂度。
  • Θ(n):线性时间复杂度。
  • Θ(n²):平方时间复杂度。

2.4 o符号(o)

o符号(Small o Notation) 用于描述算法的非渐进上界,表示在输入规模趋近无穷大时,算法的增长率严格小于某个函数。它帮助我们理解算法的上界,但并不包括等于的情况。

定义:算法的时间复杂度为o(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) < c * f(n)。

示例

  • 对于一个执行时间为2n的算法,它的时间复杂度为o(n²)。

表示法

  • o(n):小于线性时间复杂度。
  • o(n²):小于平方时间复杂度。

2.5 ω符号(ω)

ω符号(Small omega Notation) 用于描述算法的非渐进下界,表示在输入规模趋近无穷大时,算法的增长率严格大于某个函数。它帮助我们理解算法的下界,但并不包括等于的情况。

定义:算法的时间复杂度为ω(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) > c * f(n)。

示例

  • 对于一个执行时间为n log n的算法,它的时间复杂度为ω(log n)。

表示法

  • ω(1):大于常数时间复杂度。
  • ω(n):大于线性时间复杂度。
  • ω(log n):大于对数时间复杂度。

3 具体例子

3.1 插入排序(Insertion Sort)

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}
}

分析

  • 最坏情况:输入数组为降序,时间复杂度为O(n²)。
  • 最好情况:输入数组为升序,时间复杂度为Ω(n)。
  • 平均情况:时间复杂度为Θ(n²)。

3.2 二叉搜索树(Binary Search Tree)

struct Node {int data;Node* left;Node* right;
};Node* search(Node* root, int key) {if (root == nullptr || root->data == key)return root;if (root->data < key)return search(root->right, key);return search(root->left, key);
}

分析

  • 最坏情况:树退化成链表,时间复杂度为O(n)。
  • 最好情况:树是平衡的,时间复杂度为Ω(log n)。
  • 平均情况:时间复杂度为Θ(log n)。

通过理解这些渐进符号及其应用,我们可以更好地评估算法的效率,选择合适的算法来解决实际问题。

这篇关于【CS.AL】算法复杂度分析 —— 渐进符号表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062474

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int