【CS.AL】算法复杂度分析 —— 渐进符号表示法

2024-06-15 04:52

本文主要是介绍【CS.AL】算法复杂度分析 —— 渐进符号表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1 概述
    • 2 渐进符号详解
      • 2.1 大O符号(O)
      • 2.2 Ω符号(Ω)
      • 2.3 Θ符号(Θ)
      • 2.4 o符号(o)
      • 2.5 ω符号(ω)
    • 3 具体例子
      • 3.1 插入排序(Insertion Sort)
      • 3.2 二叉搜索树(Binary Search Tree)

在这里插入图片描述

1000.01.CS.AL.1.3-算法基础-渐进符号表示法-Created: 2024-06-13.Thursday17:38

1 概述

渐进符号表示法用于描述算法的时间复杂度和空间复杂度,衡量算法的性能。它可以帮助我们分析和比较不同算法的效率,尤其是当输入规模变大时。常见的渐进符号包括大O符号(O)、Ω符号(Ω)、Θ符号(Θ)、o符号(o)和ω符号(ω)。

2 渐进符号详解

2.1 大O符号(O)

大O符号(Big O Notation) 用于描述算法在最坏情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率上限。它帮助我们理解算法的效率上限。

定义:算法的时间复杂度为O(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≤ c * f(n)。

示例

  • 对于线性时间复杂度的算法,如简单的遍历数组,时间复杂度为O(n)。
  • 对于二分查找算法,时间复杂度为O(log n)。

表示法

  • O(1):常数时间复杂度。
  • O(n):线性时间复杂度。
  • O(n²):平方时间复杂度。
  • O(log n):对数时间复杂度。
  • O(n log n):线性对数时间复杂度。

2.2 Ω符号(Ω)

Ω符号(Big Omega Notation) 用于描述算法在最好情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率下限。它帮助我们理解算法的最低效率。

定义:算法的时间复杂度为Ω(f(n)),如果存在正数c和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) ≥ c * f(n)。

示例

  • 对于二分查找算法,最好情况是在第一次比较时就找到目标元素,其时间复杂度为Ω(1)。
  • 对于快速排序算法,最好情况是每次都能均匀地将数组分成两部分,其时间复杂度为Ω(n log n)。

表示法

  • Ω(1):常数时间复杂度。
  • Ω(n):线性时间复杂度。
  • Ω(n²):平方时间复杂度。

2.3 Θ符号(Θ)

Θ符号(Big Theta Notation) 用于描述算法在平均情况下的时间复杂度或空间复杂度,表示在输入规模趋近无穷大时,算法的增长率的紧确界限。它帮助我们理解算法的精确效率。

定义:算法的时间复杂度为Θ(f(n)),如果存在正数c1、c2和n0,使得对所有n ≥ n0,算法的执行时间T(n)满足c1 * f(n) ≤ T(n) ≤ c2 * f(n)。

示例

  • 对于简单的遍历数组,时间复杂度为Θ(n)。
  • 对于快速排序算法,平均情况时间复杂度为Θ(n log n)。

表示法

  • Θ(1):常数时间复杂度。
  • Θ(n):线性时间复杂度。
  • Θ(n²):平方时间复杂度。

2.4 o符号(o)

o符号(Small o Notation) 用于描述算法的非渐进上界,表示在输入规模趋近无穷大时,算法的增长率严格小于某个函数。它帮助我们理解算法的上界,但并不包括等于的情况。

定义:算法的时间复杂度为o(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) < c * f(n)。

示例

  • 对于一个执行时间为2n的算法,它的时间复杂度为o(n²)。

表示法

  • o(n):小于线性时间复杂度。
  • o(n²):小于平方时间复杂度。

2.5 ω符号(ω)

ω符号(Small omega Notation) 用于描述算法的非渐进下界,表示在输入规模趋近无穷大时,算法的增长率严格大于某个函数。它帮助我们理解算法的下界,但并不包括等于的情况。

定义:算法的时间复杂度为ω(f(n)),如果对于任意正数c,存在n0,使得对所有n ≥ n0,算法的执行时间T(n)满足T(n) > c * f(n)。

示例

  • 对于一个执行时间为n log n的算法,它的时间复杂度为ω(log n)。

表示法

  • ω(1):大于常数时间复杂度。
  • ω(n):大于线性时间复杂度。
  • ω(log n):大于对数时间复杂度。

3 具体例子

3.1 插入排序(Insertion Sort)

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}
}

分析

  • 最坏情况:输入数组为降序,时间复杂度为O(n²)。
  • 最好情况:输入数组为升序,时间复杂度为Ω(n)。
  • 平均情况:时间复杂度为Θ(n²)。

3.2 二叉搜索树(Binary Search Tree)

struct Node {int data;Node* left;Node* right;
};Node* search(Node* root, int key) {if (root == nullptr || root->data == key)return root;if (root->data < key)return search(root->right, key);return search(root->left, key);
}

分析

  • 最坏情况:树退化成链表,时间复杂度为O(n)。
  • 最好情况:树是平衡的,时间复杂度为Ω(log n)。
  • 平均情况:时间复杂度为Θ(log n)。

通过理解这些渐进符号及其应用,我们可以更好地评估算法的效率,选择合适的算法来解决实际问题。

这篇关于【CS.AL】算法复杂度分析 —— 渐进符号表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062474

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺