本文主要是介绍08_基于GAN实现人脸图像超分辨率重建实战_超分辨基础理论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. 超分辨的概念与应用
我们常说的图像分辨率指的是图像长边像素数与图像短边像素数的乘积,比如iPhoneX手机拍摄照片的分辨率为 4032px×3024px,为1200万像素。
显然,越高的分辨率能获得更清晰的成像。与之同时,分辨率越高也意味着更大的存储空间,对于空间非常有限的移动设备来说,需要考虑分辨率与存储空间的平衡。
图像超分,就是要从低分辨率的图像恢复为高分辨率的图像,它在日常的图像和视频存储与浏览中都有广泛的应用。
10年前手机中320px×240px分辨率的图像是主流,其视觉美感相对如今随处可见的4K分辨率来说是无法比拟的。我们可以使用超分技术来恢复当年拍摄的低分辨率图像,如下图是一个典型案例。手机图片浏览中也有超分算法的努力,即同一张图片在不同手机上的显示效果不一样,是因为显示分辨率越高的手机可以使用更清晰的分辨率进行展示。
2. 超分辨的典型模型
近年来CNN等深度学习模型在图像超分任务中取得了非常大的进展,使得超分算法得以真正在产品中落地,目前根据上采样(upsampling)在网络结构中的位置和使用方式不同,最主流的超分网络架构有两种。
2.1 前上采
这篇关于08_基于GAN实现人脸图像超分辨率重建实战_超分辨基础理论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!