使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型

2024-06-14 23:36

本文主要是介绍使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们公司IT部门宣布了一个大事情,他们开发了一款内部用的大模型,叫作一号AI员工(其实就是一个聊天机器人),这个一号员工可以回答所有关于公司财务、人事、制度、产品方面的问题。

我问了句:公司加班有加班费嘛。

它回答:主人,我是24小时待命,不需要加班费的噢。

好一个答非所问。

虽然我知道这应该是套用开源模型,用公司数据来训练,比较粗糙,但还是为IT同事们与时俱进的精神鼓掌。

现在各种AI大模型层出不穷,不光是互联网大厂在搞,各种传统公司也在赶时髦,比如像我们。其实大模型开发会涉及到三个难题,算法、算力、数据,不是一般企业能扛得住的。

这其中以算力的成本最高,算法可以用开源的,数据可以用自己公司的,只有算力是需要花钱买大量的GPU、CPU来跑算法和数据,像现在英伟达的H100、H200 GPU已经卖到天价,就这样你还买不到。

但其实作为个人,你也可以创建自己的AI大模型,这次给大家介绍强烈推荐两个神器,星鸾云GPU云服务器和Jupyter Lab,两者结合既可以用于数据科学、数据可视化,也可以搞定机器学习、深度学习,搭建属于你的AI大模型。

星鸾云GPU云服务器,顾名思义,是一个搭建在云服务器上的GPU算力平台,具备超强的大规模、高并发计算能力,你不需要自己搭GPU服务器,也能用到稳定、高效且高性价比的算力。

https://xl.hzxingzai.cn/register?invitation_code=0006407067


Jupyter Lab是一款基于Python的web交互式开发环境,你可以在Lab上创建多个notebook,可以理解成是Jupyter notebook的加强升级版。

Jupyter Lab集编程开发、文本编辑器、可视化平台、终端以及各种个性化组件于一体,支持写代码、跑算法、展示可视化等等,几乎无所不包。

一般我们会把Jupyter Lab安装在本地,它运行在各种计算资源上,包括CPU、GPU、TPU等等,但由于本地电脑计算资源有限,只能跑跑一些简单的数据分析、机器学习任务,所以这时候就需要星鸾云GPU云服务器来提供GPU算力。

你能在星鸾云平台上创建使用 JupyterLab,享受业界超强算力的GPU计算卡,这样既能轻松进行代码调试、快速迭代和优化算法,还能极快的跑各种任务,非常的丝滑。


以下是在星鸾云中创建使用Jupyter Lab的步骤:

1. 创建星鸾云实例

首先,在星鸾云平台上创建一个GPU云服务器实例。选择合适的GPU型号和配置,并启动实例。


2. 连接到实例

使用SSH远程连接到星鸾云实例。Windows 用户可以使用 PowerShell 或者 XShell,Mac 用户可以直接使用 Terminal。

4. 启动登录 JupyterLab

直接在星鸾云实例中打开Jupyter Lab,接着打开终端,登录实例

5. 使用 JupyterLab

接着在 JupyterLab 中创建新的notebook,编写和运行Python代码,开始享受GPU跑算法带来的快乐吧。

我们使用PyTorch在MNIST数据集上训练一个简单的神经网络,来演示下如何使用星鸾云平台+Jupyter Lab来创建AI模型。

MNIST数据集是一个手写数字识别的经典数据集,我们创建神经网络模型用来识别手写数字。

下面是在Notebook中编写的代码:

导入相关库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
加载和预处理数据
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
定义神经网络结构
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(784, 500)self.fc2 = nn.Linear(500, 10)def forward(self, x):x = x.view(-1, 784)x = torch.relu(self.fc1(x))x = self.fc2(x)return xnet = Net()
定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
训练神经网络
for epoch in range(10):  # loop over the dataset multiple timesrunning_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader)}')
保存模型
PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)

就这样,我们使用星鸾云GPU训练了一个神经网络模型,用于识别手写数据,虽然很简单,但也是一个地地道道的AI模型了。

接下来我们再尝试使用星鸾云GPU+Jupyter Lab开发一个AI大模型聊天工具,用于回答公司的业务问题。

首先配置环境,登录星鸾云实例,并安装必要的软件和库。

用于训练聊天机器人的问答数据主要包括:

公司FAQs
业务相关文档
公司制度文件
等等

然后对数据进行预处理,在JupyterLab中创建一个新的Notebook,编写代码对数据进行清洗、分词和格式化,准备输入模型训练。

接着,选择一个适合对话系统的预训练模型库,建议使用transformers库,然后在GPU加速下进行模型训练,监控训练过程并调整超参数以获得最佳性能。

以下是在JupyterLab的演示代码:

# 导入所需的库
from transformers import Trainer, TrainingArguments# 定义训练参数
training_args = TrainingArguments(output_dir="./results",evaluation_strategy="epoch",learning_rate=2e-5,per_device_train_batch_size=16,per_device_eval_batch_size=16,num_train_epochs=3,weight_decay=0.01,
)# 定义Trainer对象
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,  # 训练数据集eval_dataset=eval_dataset,    # 验证数据集tokenizer=tokenizer,
)# 训练模型
trainer.train()# 保存模型
model.save_pretrained("./ai-chat-model")
tokenizer.save_pretrained("./ai-chat-model")

模型训练好后,你可以部署为API服务,然后集成到公司的内部业务支持平台,比如内网、企微、钉钉等。

使用星鸾云GPU云服务器和JupyterLab可以很轻松的进行大模型的训练和调试,简直是黄金搭档组合。

星鸾云GPU云服务器能很好的帮助个人和企业进行大数据和AI的模型训练,不需要自己采购配置GPU服务器。

它有几个特点,我觉得在同类产品里算是领头羊的存在。

  • 超强算力:配备业界领先的GPU计算卡,提供超强的并行计算能力。
  • 专业稳定:智能液冷数据中心保障了99.99%的机器稳定性。
  • 高性价比:支持按需和包周期计费,避免资源浪费。
  • 快速交付:云主机从订购到使用仅需数分钟,提供丰富的AI工具链,实现一键部署。

大家也尝试利用星鸾云GPU云服务器自己开发个AI大模型机器人,赶赶时髦,哈哈。

https://xl.hzxingzai.cn/register?invitation_code=0006407067

这篇关于使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061812

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2