DETR实现目标检测(一)-训练自己的数据集

2024-06-14 16:28

本文主要是介绍DETR实现目标检测(一)-训练自己的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、DETR架构

DETR(Detection Transformer)是一种新型的目标检测模型,由Facebook AI Research (FAIR) 在2020年提出。DETR的核心思想是将目标检测任务视为一个直接的集合预测问题,而不是传统的两步或多步预测问题。这种方法的创新之处在于它直接预测目标的类别和边界框,而不是先生成大量的候选区域,然后再对这些区域进行分类和边界框回归。

DERT的特点主要有二:

一是Transformer结构在CV网络中的应用;

二是提出了一种新的或者说不同的损失函数(Loss Function)。

2、模型下载

模型代码下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

预训练模型(即权重文件)下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

下载后放到项目下待使用:

3、labelme标注文件转为coco模式

首先,labelme标注的文件存放在指定位置,包含json和jpg文件

然后,利用代码将labelme的标注文件转化为coco。包含annotations(两个json文件)、train2017(训练集图片)、val2017(验证集图片)

备注:必须严格按照笔者图中的文件命名方式进行命名,训练集清一色命名为instances_train2017.json,验证集清一色命名为instances_val2017.json,这是模型本身的命名要求,用户需要严格遵守。

实现代码如下:

import json
from labelme import utils
import numpy as np
import glob
import PIL.Imageclass MyEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, np.integer):return int(obj)elif isinstance(obj, np.floating):return float(obj)elif isinstance(obj, np.ndarray):return obj.tolist()else:return super(MyEncoder, self).default(obj)class labelme2coco(object):def __init__(self, labelme_json=[], save_json_path='./tran.json'):self.labelme_json = labelme_jsonself.save_json_path = save_json_pathself.images = []self.categories = []self.annotations = []# self.data_coco = {}self.label = []self.annID = 1self.height = 0self.width = 0self.save_json()def data_transfer(self):for num, json_file in enumerate(self.labelme_json):with open(json_file, 'r') as fp:data = json.load(fp)  # 加载json文件self.images.append(self.image(data, num))for shapes in data['shapes']:label = shapes['label']if label not in self.label:self.categories.append(self.categorie(label))self.label.append(label)points = shapes['points']  # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点points.append([points[0][0], points[1][1]])points.append([points[1][0], points[0][1]])self.annotations.append(self.annotation(points, label, num))self.annID += 1def image(self, data, num):image = {}img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据height, width = img.shape[:2]image['height'] = heightimage['width'] = widthimage['id'] = num + 1image['file_name'] = data['imagePath'].split('/')[-1]self.height = heightself.width = widthreturn imagedef categorie(self, label):categorie = {}categorie['supercategory'] = 'Cancer'categorie['id'] = len(self.label) + 1  # 0 默认为背景categorie['name'] = labelreturn categoriedef annotation(self, points, label, num):annotation = {}annotation['segmentation'] = [list(np.asarray(points).flatten())]annotation['iscrowd'] = 0annotation['image_id'] = num + 1annotation['bbox'] = list(map(float, self.getbbox(points)))annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]annotation['category_id'] = self.getcatid(label)  # 注意,源代码默认为1annotation['id'] = self.annIDreturn annotationdef getcatid(self, label):for categorie in self.categories:if label == categorie['name']:return categorie['id']return 1def getbbox(self, points):polygons = pointsmask = self.polygons_to_mask([self.height, self.width], polygons)return self.mask2box(mask)def mask2box(self, mask):"""从mask反算出其边框mask:[h,w]  0、1组成的图片1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)"""# np.where(mask==1)index = np.argwhere(mask == 1)rows = index[:, 0]clos = index[:, 1]# 解析左上角行列号left_top_r = np.min(rows)  # yleft_top_c = np.min(clos)  # x# 解析右下角行列号right_bottom_r = np.max(rows)right_bottom_c = np.max(clos)return [left_top_c, left_top_r, right_bottom_c - left_top_c,right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式def polygons_to_mask(self, img_shape, polygons):mask = np.zeros(img_shape, dtype=np.uint8)mask = PIL.Image.fromarray(mask)xy = list(map(tuple, polygons))PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)mask = np.array(mask, dtype=bool)return maskdef data2coco(self):data_coco = {}data_coco['images'] = self.imagesdata_coco['categories'] = self.categoriesdata_coco['annotations'] = self.annotationsreturn data_cocodef save_json(self):self.data_transfer()self.data_coco = self.data2coco()# 保存json文件json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)  # indent=4 更加美观显示if __name__ == '__main__':labelme_json = glob.glob('data/LabelmeData_frame_count/val2017/*.json')  # labelme标注好的.json文件存放目录labelme2coco(labelme_json, 'data/coco_frame_count/annotations/instances_val2017.json')  # 输出结果的存放目录

4、修改训练模型参数

先在pycharm中新建python脚本文件detr_r50_tf.py,代码如下:

import torchpretrained_weights = torch.load('detr-r50-e632da11.pth')num_class = 1  # 类别数
pretrained_weights["model"]["class_embed.weight"].resize_(num_class + 1, 256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class + 1)
torch.save(pretrained_weights, "detr-r50_%d.pth" % num_class)

将其中类别数改成自己数据集的类别数即可,执行完成后会在目录下生成适合自己数据集类别的预训练模型:

然后在models文件夹下打开detr.py,修改其中的类别数(一定要全部保持一致):

最后打开main.py,修改其中的coco_path(数据存放路径)、output_dir(结果输出路径)、device(没有cuda就改为cpu)、resume(自己生成的预训练模型)。

5、执行main.py来开始训练模型

如果不想跑太多了轮可以修改epochs数:

训练好的模型会保存在结果输出路径中:

跑起来的效果是这样的:

这篇关于DETR实现目标检测(一)-训练自己的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060920

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指