每天一个数据分析题(三百六十七)- 头脑风暴因果图

2024-06-14 14:04

本文主要是介绍每天一个数据分析题(三百六十七)- 头脑风暴因果图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

头脑风暴因果图(鱼骨图)绘制过程中填上问题或现状的是在‘鱼’的哪个部位?

A. 鱼尾

B. 鱼头

C. 脊椎

D. 鱼刺
数据分析认证考试介绍:点击进入

题目来源于CDA模拟题库

点击此处获取答案

这篇关于每天一个数据分析题(三百六十七)- 头脑风暴因果图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060606

相关文章

每天认识几个maven依赖(ActiveMQ+activemq-jaxb+activesoap+activespace+adarwin)

八、ActiveMQ 1、是什么? ActiveMQ 是一个开源的消息中间件(Message Broker),由 Apache 软件基金会开发和维护。它实现了 Java 消息服务(Java Message Service, JMS)规范,并支持多种消息传递协议,包括 AMQP、MQTT 和 OpenWire 等。 2、有什么用? 可靠性:ActiveMQ 提供了消息持久性和事务支持,确保消

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

win7下安装Canopy(EPD) 及 Pandas进行python数据分析

先安装好canopy,具体安装版本看自己需要那种,我本来是打算安装win764位的,却发现下载总是出现错误,无奈只能下载了32位的! https://store.enthought.com/downloads/#default 安装好之后,参考如下连接,进行检验: 之后再根据下面提供的连接进行操作,一般是没问题的! http://jingyan.baidu.com/article/5d6

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

每天一道面试题(2):fail-safe 机制与 fail-fast 机制分别有什么作用?

当谈论Java集合的 fail-fast 和 fail-safe 机制时,涉及的是在集合被并发修改时的行为和处理方式。这些机制对保证程序的正确性和稳定性非常重要,尤其是在多线程环境中。 1. Fail-Fast 机制 定义: Fail-fast 机制的核心是在检测到集合在遍历过程中被修改时,立即抛出 ConcurrentModificationException 异常,从而中断迭代操作。这种

【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

目录  Wald 估计与简单控制回归的比较 CausalPy 和 多变量模型 感兴趣的系数 复杂化工具变量公式  Wald 估计与简单控制回归的比较 但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。 naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df[

风暴项目个性化推荐系统浅析

风暴项目的主要任务是搭建自媒体平台,作为主开发人员的我希望把工作重心放在个性化推荐系统上。 目前风暴项目的个性化推荐是基于用户行为信息记录实现的,也就是说对于每条资讯,数据库中有字段标明其类型。建立一张用户浏览表,对用户的浏览行为进行记录,从中可以获取当前用户对哪类资讯感兴趣。 若用户第一次登陆,则按默认规则选取热点资讯做推荐,及所有资讯按浏览量降序排序,取前4个。另外,我考虑到后期可能有商业

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

使用AI大模型进行企业数据分析与决策支持

使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势: 一、AI大模型在数据分析中的应用 超级数据处理能力 海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模

AIGC与数据分析融合,引领商业智能新变革(TOP企业实践)

AIGC与数据分析融合,引领商业智能新变革(TOP企业实践) 前言AIGC与数据分析融合 前言 在当今数字化时代,数据已成为企业发展的核心资产,而如何从海量数据中挖掘出有价值的信息,成为了企业面临的重要挑战。随着人工智能技术的飞速发展,AIGC(人工智能生成内容)与数据分析的融合为企业提供了新的解决方案。 阿里巴巴作为全球领先的科技公司,一直致力于探索和应用前沿技术,以提升企业