Word2vec,是一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。关于word2vec模型,下面说法不正确的是: A. 得到的词向量维度小,可以节省存储和计算资源 B. 考虑了全局语料库的信息 C. 无法解决多义词的问题 D. 可以表示词和词之间的关系 数据分析认证考试介绍:点击进入 数据分析考试大纲下载 题目来源于CDA模拟题库 点
有一个需求,需要保留每个电站每一天发电数据的最大值记录,其余删除。 表数据大概长这样: MYSQL 5.7写法:(因为不支持ROW_NUMBER()函数,采用自定义的变量来代替) 首次清理一年内数据:INTERVAL 365 DAY清理前一日数据:INTERVAL 1 DAY----------------- DELETE A FROM power_app_data_log
Word2vec,是一群用来产生词向量的相关模型,用来训练以重新建构语言学之词文本。Word2Vec包含哪两种模型? A. CBOW模型和Skip-Gram模型 B. Bag-of-Words和GloVe模型 C. LSA模型和CBOW模型 D. GloVe模型和CBOW模型 数据分析认证考试介绍:点击进入 数据分析考试大纲下载 题目来源于CDA模拟题库 点击此处获取答案
Skip-Gram模型的基础形式非常简单,为了更清楚地解释模型,我们先从最一般的基础模型来看Word2Vec。Skip-Gram模型不包含以下哪一项? A. 输入层 B. 池化层 C. 输出层 D. 隐藏层 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学
本文重点 在前面的课程中,为了解决人脸识别的问题,我们学习了Siamese神经网络。本文我们学习另外一种人脸识别网络模型FaceNet。 论文 FaceNet: A Unified Embedding for Face Recognition and Clustering FaceNet概述 FaceNet是谷歌在CVPR 2015上提出的一种深度学习模型,旨在解决人脸识别、验证和
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络。BP神经网络的训练顺序为何?( A:调整权重; B:计算误差值; C:利用随机的权重产生输出的结果) A. BCACA B. CABAB C. BACAC D. CBABA 数据分析认证考试