背包问题----完全背包(详解|代码实现|背包具体物品的求解)

2024-06-14 08:32

本文主要是介绍背包问题----完全背包(详解|代码实现|背包具体物品的求解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包是在N物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,每物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解怎么装物品可使背包里物品总价值最大。

动态规划(DP):

        1) 子问题定义:F[i][j]表示前i物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。

        2) 根据第i物品放多少件进行决策

                                     (2-1)

        其中F[i-1][j-K*C[i]]+K*W[i]表示前i-1物品中选取若干件物品放入剩余空间为j-K*C[i]的背包中所能得到的最大价值加上k件第i物品;

       设物品种数为N,背包容量为V,第i物品体积为C[i],第i物品价值为W[i]。

       与01背包相同,完全背包也需要求出NV个状态F[i][j]。但是完全背包求F[i][j]时需要对k分别取0,…,j/C[i]求最大F[i][j]值,耗时为j/C[i]。那么总的时间复杂度为O(NV∑(j/C[i]))

由此写出伪代码如下:

[cpp]  view plain copy
  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. for i←1 to N  
  6.   
  7.     do for j←1 to V  
  8.   
  9.         do for k←0 to j/C[i]  
  10.   
  11.            if(j >= k*C[i])  
  12.   
  13.                 then F[i][k] ← max(F[i][k],F[i-1][j-k*C[i]]+k*W[i])  
  14.   
  15. return F[N][V]  

以上伪代码数组均为基于1索引,即第一件物品索引为1。空间复杂度O(VN)、时间复杂度为O(NV∑(j/C[i]))

        简单优化:

        若两件物品满足C[i] ≤C[j]&&W[i] ≥W[j]时将第j种物品直接筛选掉。因为第i种物品比第j种物品物美价廉,用i替换j得到至少不会更差的方案。

       这个筛选过程如下:先找出体积大于背包的物品直接筛掉一部分(也可能一种都筛不掉)复杂度O(N)。利用计数排序思想对剩下的物品体积进行排序,同时筛选出同体积且价值最大的物品留下,其余的都筛掉(这也可能一件都筛不掉)复杂度O(V)。整个过程时间复杂度为O(N+V)

 

       转化为01背包:

       因为同种物品可以多次选取,那么第i种物品最多可以选取V/C[i]件价值不变的物品,然后就转化为01背包问题。整个过程的时间复杂度并未减少。如果把第i种物品拆成体积为C[i]×2k价值W[i]×2k的物品,其中满足C[i]×2k≤V。那么在求状态F[i][j]时复杂度就变为O(log2(V/C[i]))。整个时间复杂度就变为O(NVlog2(V/C[i]))

 

时间复杂度优化为O(NV)

将原始算法的DP思想转变一下。

设F[i][j]表示出在前i种物品中选取若干件物品放入容量为j的背包所得的最大价值。那么对于第i种物品的出现,我们对第i种物品放不放入背包进行决策。如果不放那么F[i][j]=F[i-1][j];如果确定放,背包中应该出现至少一件第i种物品,所以F[i][j]种至少应该出现一件第i种物品,即F[i][j]=F[i][j-C[i]]+W[i]。为什么会是F[i][j-C[i]]+W[i]?因为F[i][j-C[i]]里面可能有第i种物品,也可能没有第i种物品。我们要确保F[i][j]至少有一件第i件物品,所以要预留C[i]的空间来存放一件第i种物品。

状态方程为:

                           (2-2)

伪代码为:

[cpp]  view plain copy
  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. for i←1 to N  
  6.   
  7.     do for j←1 to V  
  8.   
  9.         F[i][j] ← F[i-1][j]  
  10.   
  11.         if(j >= C[i])  
  12.   
  13.             then F[i][j] ← max(F[i][j],F[i][j-C[i]]+ W[i])  
  14.   
  15. return F[N][V]  

        具体背包中放入那些物品的求法和01背包情况差不多,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i]。完全背包问题在处理i自减和01背包不同,01背包是不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历而完全背包只有当F[i][j]与F[i-1][j]相等时i才自减1。因为F[i][j]=F[i-1][j]说明背包里面不会含有i,也就是说对于前i种物品容量为j的背包全部都放入前i-1种物品才能实现价值最大化,或者直白的理解为前i种物品中第i种物品物不美价不廉,直接被筛选掉。

        打印背包内物品的伪代码如下:

[cpp]  view plain copy
  1. i←N  
  2.   
  3. j←V  
  4.   
  5. while(i>0 && j>0)  
  6.   
  7.      do if(F[i][j]=F[i][j-C[i]]+W[i])  
  8.   
  9.           then Print W[i]  
  10.   
  11.                j←j-C[i]  
  12.   
  13.         else  
  14.   
  15.           i←i-1  

        和01背包一样,也可以利用一个二维数组Path[][]来标记背包中的物品。开始时Path[N][V]初始化为0,当 F[i][j]==F[i][j-C[i]]+W[i]时Path[i][j]置1。最后通过从Path[N+1][V+1]逆着走向Path[0][0]来获取背包内物品。其中Path[0][]与Path[][0]为边界。同样,在打印路径的时候当Path[][]=1时,打印W[i];Path[][]=0时i自减1.

       加入路径信息的伪代码如下:

[cpp]  view plain copy
  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. Path[][] ← 0  
  6.   
  7. for i←1 to N  
  8.   
  9.     do for k←1 to V  
  10.   
  11.         F[i][k] ← F[i-1][k]  
  12.   
  13.         if(k >= C[i] && F[i][k] < F[i][k-C[i]]+W[i])  
  14.   
  15.             then F[i][k] ← F[i][k-C[i]]+W[i]  
  16.   
  17.                  Path[i][k] ← 1  
  18.   
  19. return F[N][V] and Path[][]  

打印背包内物品的伪代码如下:

[cpp]  view plain copy
  1. i←N  
  2.   
  3. j←V  
  4.   
  5. while(i>0 && j>0)  
  6.   
  7.      do if(Path[i][j]=1)  
  8.   
  9.           then Print W[i]  
  10.   
  11.                j←j-C[i]  
  12.   
  13.         else  
  14.   
  15.           i←i-1  

优化空间复杂度为O(V)

        和01背包问题一样,完全背包也可以用一维数组来保存数据。算法样式和01背包的很相似,唯一不同的是对V遍历时变为正序,而01背包为逆序。01背包中逆序是因为F[i][]只和F[i-1][]有关,且第i的物品加入不会对F[i-1][]状态造成影响。而完全背包则考虑的是第i物品的出现的问题,第i种物品一旦出现它势必应该对第i种物品还没出现的各状态造成影响。也就是说,原来没有第i种物品的情况下可能有一个最优解,现在第i种物品出现了,而它的加入有可能得到更优解,所以之前的状态需要进行改变,故需要正序。

状态方程为:

                          (2-3)

 

伪代码如下:

[cpp]  view plain copy
  1. F[] = {0}  
  2.   
  3. for i←1 to N  
  4.   
  5.     do for k←C[i] to V  
  6.   
  7.         F[k] ← max(F[k],F[k-C[i]]+W[i])  
  8.   
  9. return F[V]  

        具体背包中放入那些物品的求法和上面空间复杂度为O(NV)算法一样,用一个Path[][]记录背包信息。但这里面是当F[i]=F[i-C[i]]+W[i]时将Path置1.

        伪代码如下:

[cpp]  view plain copy
  1. F[0][] = {0}  
  2.   
  3. F[][0] = {0}  
  4.   
  5. Path[][] ← 0  
  6.   
  7. for i←1 to N  
  8.   
  9.     do for k←C[i] to V  
  10.   
  11.         if(F[i] < F[k-C[i]]+W[i])  
  12.   
  13.             then F[i] ← F[k-C[i]]+W[i]  
  14.   
  15.                  Path[i][k] ← 1  
  16.   
  17. return F[N][V] and Path[][]  

        打印路径的伪代码和前面未压缩空间复杂度时的伪代码一样,这里不再重写。

 

         举例:表2-1为一个背包问题数据表,设背包容量为10根据上述解决方法可得到对应的F[i][j]如表2-2所示,最大价值即为F[6][10].

表2-1背包问题数据表

物品号i123456
体积C325164
价值W65102168

 

表2-2前i件物品选若干件放入空间为j的背包中得到的最大价值表

 012345678910
000000000000
10006661212121818
2005610111516202125
3005610111516202125
4025710121517202225
5025710121618212326
6025710121618212326

 下面针对前面提到的表2-1提供两种方法的测试代码:


//时间复杂度O(VN),空间复杂度为O(VN)

#include <iostream>
#include <cstring>
#define N 101
using namespace std;
int Table[N][N],Table2[N][N],Path[N][N];
int Package02(int Weight[], int Value[], int nLen, int nCapacity)
{for(int i = 1; i <= nLen; i++){for(int j = 1; j <= nCapacity; j++){Table[i][j] = Table[i-1][j];if(j >= Weight[i-1] && Table[i][j] < Table[i][j-Weight[i-1]]+Value[i-1]){Table[i][j] = Table[i][j-Weight[i-1]]+Value[i-1];Path[i][j]=1;}}}int i2 = nLen, j2 = nCapacity;while(i2 > 0 && j2 > 0){if(Path[i2][j2] == 1){cout << Weight[i2-1] << " ";j2 -= Weight[i2-1];}elsei2--;}cout << endl;int nRet = Table[nLen][nCapacity];return nRet;
}int main()
{int Weight[] = {3,2,5,1,6,4};int Value[] =  {6,5,10,2,16,8};int nCapacity = 10;cout << Package02(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;
//	cout << Package02_Compress(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;return 0;
}
//时间复杂度O(VN),不考虑路径空间复杂度为O(V),考虑路径空间复杂度为O(VN)
#include <iostream>
#include <cstring>
#define N 101
using namespace std;
int Table[N],Path[N][N];
int Package02_Compress(int Weight[], int Value[], int nLen, int nCapacity)  
{  memset(Table,0,(nCapacity+1)*sizeof(int));  for(int i = 0; i < nLen; i++)  {  for(int j = Weight[i]; j <=nCapacity; j++)  {  if(Table[j] < Table[j-Weight[i]]+Value[i])  {  Table[j] = Table[j-Weight[i]]+Value[i];  Path[i+1][j] = 1;  }  }     }  int i3 = nLen, j3 = nCapacity;  while(i3 > 0 && j3 > 0)  {  if(Path[i3][j3] == 1)  {  cout << Weight[i3-1] << " ";  j3 -= Weight[i3-1];  }  else  i3--;  }  cout << endl;  int nRet = Table[nCapacity];      return nRet;  
}  int main()
{int Weight[] = {3,2,5,1,6,4};int Value[] =  {6,5,10,2,16,8};int nCapacity = 10;
//	cout << Package02(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;cout << Package02_Compress(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;return 0;
}


这篇关于背包问题----完全背包(详解|代码实现|背包具体物品的求解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059896

相关文章

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M