POJ 2975 Nim(尼姆博弈的变形)

2024-06-14 07:18
文章标签 poj 博弈 尼姆 变形 nim 2975

本文主要是介绍POJ 2975 Nim(尼姆博弈的变形),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意

有 n(1n1000) 堆石子,每堆石子数量为 1 到 1,000,000,000 之间的一个整数。两人玩游戏。每回合,游戏者必须从某堆中取走至少一个石子,取走最后一个石子的人获胜。问先手第一步有多少种走法使得他/她获胜

解题思路

Nim 游戏的简单变形

说明:下面的 '^' 符号表示 “异或” 的意思

先求出所有的石子数量的 Nim 和,设为 sum。

对于某一堆石子,设石子数量为 Ai,sum^Ai 就得到了除去该堆石子,其余石子数量的异或和。假设先手第一步在这一堆中取石子,如果取走石子后,这一堆剩余石子 Bi 个,要保证先手必胜,必然下一个局面是后手必胜,于是有:sum^Ai^Bi=0,也就是说:

    sum^Ai=Bi

看到上面的式子,不难得出结论:在 Ai 中取走 Ai-(sum^Ai) 个石子是第一步在 Ai 中取石子的唯一获胜方式,当然前提是:

    Aisum^Ai

于是利用上面的结论对每一堆石子判断一下即可

注意的是:^的优先级比<的低

代码:

#include<cstdio>
#include<cstring>int main(){int n,num[1005];while(scanf("%d",&n),n){int sum=0;for(int i=0; i<n; i++){scanf("%d",&num[i]);sum=sum^num[i];}if(sum==0){printf("0\n");continue;}int ans=0;for(int i=0; i<n; i++){if((sum^num[i])<=num[i]) ans++;}printf("%d\n",ans);}return 0;
}


这篇关于POJ 2975 Nim(尼姆博弈的变形)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059731

相关文章

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

poj2505(典型博弈)

题意:n = 1,输入一个k,每一次n可以乘以[2,9]中的任何一个数字,两个玩家轮流操作,谁先使得n >= k就胜出 这道题目感觉还不错,自己做了好久都没做出来,然后看了解题才理解的。 解题思路:能进入必败态的状态时必胜态,只能到达胜态的状态为必败态,当n >= K是必败态,[ceil(k/9.0),k-1]是必胜态, [ceil(ceil(k/9.0)/2.0),ceil(k/9.

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D