2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集

本文主要是介绍2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述

01背包问题 二维

卡码网链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] :从下标为[0,i-1]个物品中任取,放进容量为j的背包,价值总和最大为多少。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  3. dp数组如何初始化 【】
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}
  1. 确定遍历顺序【其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。】
  2. 举例推导dp数组
    先遍历物品,还是先遍历背包都可以,先遍历物品比较简单
def hanshu():M, bagweight = [int(x) for x in input().split()]weight = [int(x) for x in input().split()]value = [int(x) for x in input().split()]dp = [[0]*(bagweight+1) for i in range(M)]  #dp[i][j]代表从物品【0,i-1】让任意取,背包重量j,达到的最大价值#初始化for j in range(weight[0],bagweight+1):dp[0][j] = value[0]for i in range(1, M):for j in range(1, bagweight+1):if j>=weight[i]:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i])else:dp[i][j] = dp[i-1][j]return dp[M-1][bagweight]maxs = hanshu()
print(maxs)

01背包问题 一维(滚动数组)

其实就是遍历物品i的时候,覆盖i-1的结果

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    在这里插入图片描述
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量【倒序】dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
def test_1_wei_bag_problem():weight = [1, 3, 4]value = [15, 20, 30]bagWeight = 4# 初始化dp = [0] * (bagWeight + 1)for i in range(len(weight)):  # 遍历物品for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[bagWeight])test_1_wei_bag_problem()

416. 分割等和子集

力扣链接
在这里插入图片描述
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    == 如果 dp[j] = j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。==
    主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。
    时间复杂度:O(n^2)
    空间复杂度:O(n)
class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums) % 2 != 0:return Falsetarget = sum(nums) // 2dp = [0] * (target + 1)for num in nums:for j in range(target, num-1, -1):dp[j] = max(dp[j], dp[j-num] + num)return dp[-1] == target    # 集合中的元素正好可以凑成总和target
class Solution:def canPartition(self, nums: List[int]) -> bool:total_sum = sum(nums)if total_sum % 2 != 0:return Falsetarget_sum = total_sum // 2dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]# 初始化第一行(空子集可以得到和为0)for i in range(len(nums) + 1):dp[i][0] = Truefor i in range(1, len(nums) + 1):for j in range(1, target_sum + 1):if j < nums[i - 1]:# 当前数字大于目标和时,无法使用该数字dp[i][j] = dp[i - 1][j]else:# 当前数字小于等于目标和时,可以选择使用或不使用该数字dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]return dp[len(nums)][target_sum]

这篇关于2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059494

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu