2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集

本文主要是介绍2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述

01背包问题 二维

卡码网链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] :从下标为[0,i-1]个物品中任取,放进容量为j的背包,价值总和最大为多少。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  3. dp数组如何初始化 【】
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}
  1. 确定遍历顺序【其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。】
  2. 举例推导dp数组
    先遍历物品,还是先遍历背包都可以,先遍历物品比较简单
def hanshu():M, bagweight = [int(x) for x in input().split()]weight = [int(x) for x in input().split()]value = [int(x) for x in input().split()]dp = [[0]*(bagweight+1) for i in range(M)]  #dp[i][j]代表从物品【0,i-1】让任意取,背包重量j,达到的最大价值#初始化for j in range(weight[0],bagweight+1):dp[0][j] = value[0]for i in range(1, M):for j in range(1, bagweight+1):if j>=weight[i]:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i])else:dp[i][j] = dp[i-1][j]return dp[M-1][bagweight]maxs = hanshu()
print(maxs)

01背包问题 一维(滚动数组)

其实就是遍历物品i的时候,覆盖i-1的结果

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    在这里插入图片描述
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量【倒序】dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
def test_1_wei_bag_problem():weight = [1, 3, 4]value = [15, 20, 30]bagWeight = 4# 初始化dp = [0] * (bagWeight + 1)for i in range(len(weight)):  # 遍历物品for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[bagWeight])test_1_wei_bag_problem()

416. 分割等和子集

力扣链接
在这里插入图片描述
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[j] :容量为j的背包,价值总和最大为dp[i]。
  2. 确定递推公式,
    有两个方向可以推导出来dp[i][j] :
    不放物品i: dp[i][j] = dp[i - 1][j]
    放物品i: dp[i][j] = dp[i-1][j-weight[i]] + value[i]
    所以递归公式:此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组如何初始化
  2. 确定遍历顺序 倒序遍历背包是为了保证物品i只被放入一次!
    == 如果 dp[j] = j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。==
    主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。
    时间复杂度:O(n^2)
    空间复杂度:O(n)
class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums) % 2 != 0:return Falsetarget = sum(nums) // 2dp = [0] * (target + 1)for num in nums:for j in range(target, num-1, -1):dp[j] = max(dp[j], dp[j-num] + num)return dp[-1] == target    # 集合中的元素正好可以凑成总和target
class Solution:def canPartition(self, nums: List[int]) -> bool:total_sum = sum(nums)if total_sum % 2 != 0:return Falsetarget_sum = total_sum // 2dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]# 初始化第一行(空子集可以得到和为0)for i in range(len(nums) + 1):dp[i][0] = Truefor i in range(1, len(nums) + 1):for j in range(1, target_sum + 1):if j < nums[i - 1]:# 当前数字大于目标和时,无法使用该数字dp[i][j] = dp[i - 1][j]else:# 当前数字小于等于目标和时,可以选择使用或不使用该数字dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]return dp[len(nums)][target_sum]

这篇关于2024/06/13--代码随想录算法3/17|01背包问题 二维、01背包问题 一维、416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059494

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖