hduoj1878 欧拉回路

2024-06-14 04:58
文章标签 欧拉 回路 hduoj1878

本文主要是介绍hduoj1878 欧拉回路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2

1 2

2 3
0
Sample Output
1

0



欧拉回路算法思想:深度搜索算法

欧拉回路具有的充要条件:1、是联通图  2、定点的度数都为偶数


#include<stdio.h>
#include<string.h>
int grap[1005][1005];//采用邻接矩阵来存储图
int visit[105]; //用与在遍历时标记该节点的访问与否
int degree[1005]; //用来存储每个节点的度
void dfs(int v,int n)  //深搜
{visit[v]=1;  for(int i=1;i<=n;i++){if(grap[v][i]&&visit[i]==0){dfs(i,n);}}
}
int main()
{int d,v,i;while(scanf("%d%d",&d,&v)!=EOF&&d)  //分别输入点和边	{memset(grap,0,sizeof(grap)); // 初始化数组memset(visit,0,sizeof(visit));memset(degree,0,sizeof(degree));int a,b;int flag=1;  //用于标记for(i=0;i<v;i++){scanf("%d%d",&a,&b);grap[a][b]=grap[b][a]=1;degree[a]++;degree[b]++;dfs(1,d); //从节点1开始遍历}for(i=1;i<=d;i++){if(visit[i]==0){flag=0;break;}if(degree[i]%2!=0)  //判断顶点的度是否为偶数{flag=0;break;}}if(flag)printf("1\n");elseprintf("0\n");}return 0;}




这篇关于hduoj1878 欧拉回路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059438

相关文章

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

欧拉系统 kernel 升级、降级

系统版本  cat  /etc/os-release  NAME="openEuler"VERSION="22.03 (LTS-SP1)"ID="openEuler"VERSION_ID="22.03"PRETTY_NAME="openEuler 22.03 (LTS-SP1)"ANSI_COLOR="0;31" 系统初始 kernel 版本 5.10.0-136.12.0.

nyoj99(并查集+欧拉路+dfs)

单词拼接 时间限制: 3000 ms  |  内存限制: 65535 KB 难度: 5 描述 给你一些单词,请你判断能否把它们首尾串起来串成一串。 前一个单词的结尾应该与下一个单词的道字母相同。 如 aloha dog arachnid gopher tiger rat   可以拼接成:aloha.arachnid.dog.gopher.rat.tiger 输入 第一行是一个整

nyoj42(并查集解决欧拉回路)

一笔画问题 时间限制: 3000 ms  |  内存限制: 65535 KB 难度: 4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。 规定,所有的边都只能画一次,不能重复画。   输入 第一行只有一个正整数N(N<=10)表示测试数据的组数。 每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<

UVa 10820 Send a Table (Farey数列欧拉函数求和)

这里先说一下欧拉函数的求法 先说一下筛选素数的方法 void Get_Prime(){ /*筛选素数法*/for(int i = 0; i < N; i++) vis[i] = 1;vis[0] = vis[1] = 0;for(int i = 2; i * i < N; i++)if(vis[i]){for(int j = i * i; j < N; j += i)vis[j] =

JD 1027:欧拉回路

OJ题目:click here~~ 题目分析: 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路。 具有欧拉路径的图称为欧拉图(简称E图)。 无向图存在欧拉回路的充要条件: 一个无向图存在欧拉回路,当且仅当该图拥有奇数度数的顶点的个数为0且该图是连通图。 有向图存在欧拉回路的充要条件: 一

欧拉数据库的搭建及其部署

数据库的搭建 进行数据库安装前,必须保证软件yum仓库搭建完成 使用命令 dnf install mariadb-server,发现冲突selinux-policy-targeted-35.5-21.oe2203sp3.noarch有问题 [root@localhost yum.repos.d]# dnf install mariadb-server [root@localhost yu

欧拉下搭建第三方软件仓库—docker

1.创建新的文件内容 切换目录到etc底下的yum.repos.d目录,创建docker-ce.repo文件 [root@localhost yum.repos.d]# cd /etc/yum.repos.d/ [root@localhost yum.repos.d]# vim docker-ce.repo 编辑文件,使用阿里源镜像源,镜像源在编辑中需要单独复制 https://mirr

【UVa】 10735 Euler Circuit 混合图的欧拉回路 最大流

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1676 题目要求:求混合图的欧拉回路+输出路径。 题目分析: 先看一段比较流行的说法吧~: -----------------------------------------