本文主要是介绍LeNet-5训练神经网络训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
LeNet-5训练
导包
import tensorflow as tf from tensorflow.keras import layers, models, datasets, optimizers
加载Fashion-MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()
归一化像素值到[0, 1]区间
train_images = train_images.astype("float32") / 255 test_images = test_images.astype("float32") / 255
对标签进行分类编码
train_labels = tf.keras.utils.to_categorical(train_labels, 10) test_labels = tf.keras.utils.to_categorical(test_labels, 10)
定义LeNet-5模型
model = models.Sequential([ layers.Conv2D(6, (5, 5), activation='relu', input_shape=(28, 28, 1)), layers.AveragePooling2D((2, 2)), layers.Conv2D(16, (5, 5), activation='relu'), layers.AveragePooling2D((2, 2)), layers.Conv2D(120, (3, 3), activation='relu', padding='valid'), # 注意:这里可能需要调整以避免过拟合或尺寸问题 layers.Flatten(), layers.Dense(84, activation='relu'), layers.Dense(10, activation='softmax') ])
编译模型
model.compile(optimizer=optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
训练模型
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))
评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels) print(f'Test Accuracy: {test_acc:.4f}')
训练模型保存
save_path = r'D:\\图像处理、深度学习\\训练保存\\LeNet-5.h5'model.save(save_path)
这篇关于LeNet-5训练神经网络训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!