【机器学习】新网络环境docker实战:AI智能体平台DIFY部署与升级

本文主要是介绍【机器学习】新网络环境docker实战:AI智能体平台DIFY部署与升级,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、引言

二、Dify在dockerhub被禁用后,如何部署、升级

2.1 网络及硬件条件

2.2 docker部署、升级方案

三、总结


一、引言

关于dify,之前力推过,大家可以跳转 AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署了解,今天主要以dify为例,分享一下当dockerhub镜像库被禁之后,如何部署和使用dockerhub上的image镜像。

二、Dify在网络环境不稳定的条件下,如何部署、升级

2.1 网络及硬件条件

  • mac笔记本:网络稳定,arm64架构
  • 服务器:网络不稳定,amd64架构

处理器架构可以通过uname -m查看

2.2 docker部署、升级方案

原方案(dockerhub未被禁用,直接通过docker compose拉取): 

#首次部署:
git clone https://github.com/langgenius/dify
cd docker
docker compose up -d#二次升级:
git checkout main
git pull origin main
cd docker
docker compose up -d

新方案(无法直接从dockerhub拉取,先拉取到笔记本,再上传至服务器)

1、克隆项目、获取image名称和版本号

#首次部署
git clone https://github.com/langgenius/dify.git
cd docker 
#查看docker-compose.yaml中的image名称和版本号
awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq

2、针对每一个image,通过--platform指定linux/amd64/v4架构,pull拉取(务必指定与服务器匹配的架构!!!否则会将旧版本的image的tag附值为None,手动回退很麻烦!!!

 awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq | xargs  -n 1 docker pull  --platform  linux/amd64/v4

3、查看是否拉取成功

#查看是否拉取成功
docker images

4、将所有镜像打包至amd64-dify-images-0.6.10.tar

awk '/^ *image:/ {print $2}' docker-compose.yaml | uniq | xargs  docker save -o amd64-dify-images-0.6.10.tar

5、上传至服务器,可以使用scp、rsync等

6、在服务器上将amd64-dify-images-0.6.10.tar内的所有镜像load到image库中,并查看运行情况

docker load -I amd64-dify-images-0.6.10.tardocker images

7、采用docker compose up -d启动

docker compose up -d

三、总结

当dockerhub被禁后,产生最大的影响就是服务器无法拉取项目image镜像,本文先在网络条件允许的mac笔记本上下载image,再将image镜像传至服务器应用。

最核心的问题还是linux服务器没办法科学上网。尝试过export https_proxy、http_proxy、all_proxy的方式,将笔记本作为代理服务器,没有生效。有什么linux下科学上网的方式,希望可以私信分享给我,求求了。 

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

AI智能体研发之路-模型篇(十):【机器学习】Qwen2大模型原理、训练及推理部署实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

【AI大模型】Transformers大模型库(六):torch.cuda.OutOfMemoryError: CUDA out of memory解决

【AI大模型】Transformers大模型库(七):单机多卡推理之device_map

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig

这篇关于【机器学习】新网络环境docker实战:AI智能体平台DIFY部署与升级的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058359

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操