算力巅峰对决,一文读懂CPU、GPU、GPGPU、FPGA、DPU、TPU

2024-06-13 17:28

本文主要是介绍算力巅峰对决,一文读懂CPU、GPU、GPGPU、FPGA、DPU、TPU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  e1296a49d3233c743796ef69cd56e3c1.jpeg 

通俗理解CPU、GPU、GPGPU、FPGA、DPU、TPU

   

每个处理器都有它的独特之处和擅长领域,它们共同构成了现代计算的多彩世界。

1. CPU - 中央处理单元

CPU,城市的市中心,精通从基础计算到复杂逻辑决策的各项任务。它高效执行操作指令,轻松应对日常任务如网页浏览和文档编辑。尽管多才多艺,面对超复杂或特定任务时,仍需特定区域助力。CPU,城市的智慧核心,高效且全面。

2. GPU - 图形处理单元

GPU如同城市的艺术殿堂,专精于图形与视频渲染。其设计初衷在于加速图像生成,迅速展示于屏幕。凭借其多核心并行处理能力,GPU在处理图形渲染或并行计算时,效率远超CPU。无论是畅玩游戏还是观赏高清大片,背后的功臣皆是GPU。

3. GPGPU - 通用计算图形处理单元

GPGPU犹如艺术区的多功能巨擘,除了卓越的图形处理,更能胜任科学计算和机器学习等多样任务。其核心理念在于借GPU的并行处理能力,为CPU减负,助力应用实现效率飞跃。

4. FPGA - 现场可编程门阵列

FPGA犹如一座大楼,内含无数可灵活配置的“房间”。这些房间能根据需求进行定制与连接,赋予FPGA极高的灵活性与效率。它特别适用于硬件加速和逻辑多变的场景,犹如一块随需改建的空地,为您的计算任务量身打造。

5. DPU - 数据处理单元

DPU,城市数据中心的核心,专注于数据移动、存储和安全,解放CPU与GPU专注于高效计算。其优化数据中心运行,特别是在云计算与大数据时代,助力数据处理加速,实现高效能计算。

6. TPU - 张量处理单元

TPU是专为加速机器学习而设计的高科技区域,优化矩阵乘法等特定计算,效率远超通用CPU或GPU。它如同机器学习领域的超级计算中心,为深度学习等任务提供强大动力。

小结一下:

CPU:多面手,处理各种日常计算任务。

GPU:艺术家,擅长图形和并行计算。

GPGPU:多才多艺的艺术家,除了图形还能处理通用计算任务。

FPGA:可按需定制的空地,适用于特定的计算任务。

DPU:数据中心,专注于数据处理以优化系统整体性能。

TPU:机器学习的超级计算中心,高效处理深度学习任务。


-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

这篇关于算力巅峰对决,一文读懂CPU、GPU、GPGPU、FPGA、DPU、TPU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057952

相关文章

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

如何用GPU算力卡P100玩黑神话悟空?

精力有限,只记录关键信息,希望未来能够有助于其他人。 文章目录 综述背景评估游戏性能需求显卡需求CPU和内存系统需求主机需求显式需求 实操硬件安装安装操作系统Win11安装驱动修改注册表选择程序使用什么GPU 安装黑神话悟空其他 综述 用P100 + PCIe Gen3.0 + Dell720服务器(32C64G),运行黑神话悟空画质中等流畅运行。 背景 假设有一张P100-

Java程序到CPU上执行 的步骤

相信很多的小伙伴在最初学习编程的时候会容易产生一个疑惑❓,那就是编写的Java代码究竟是怎么一步一步到CPU上去执行的呢?CPU又是如何执行的呢?今天跟随小编的脚步去化解开这个疑惑❓。 在学习这个过程之前,我们需要先讲解一些与本内容相关的知识点 指令 指令是指导CPU运行的命令,主要由操作码+被操作数组成。 其中操作码用来表示要做什么动作,被操作数是本条指令要操作的数据,可能是内存地址,也

GPU 计算 CMPS224 2021 学习笔记 02

并行类型 (1)任务并行 (2)数据并行 CPU & GPU CPU和GPU拥有相互独立的内存空间,需要在两者之间相互传输数据。 (1)分配GPU内存 (2)将CPU上的数据复制到GPU上 (3)在GPU上对数据进行计算操作 (4)将计算结果从GPU复制到CPU上 (5)释放GPU内存 CUDA内存管理API (1)分配内存 cudaErro

Linux 云计算底层技术之一文读懂 Qemu 架构

Qemu 架构概览 Qemu 是纯软件实现的虚拟化模拟器,几乎可以模拟任何硬件设备,我们最熟悉的就是能够模拟一台能够独立运行操作系统的虚拟机,虚拟机认为自己和硬件打交道,但其实是和 Qemu 模拟出来的硬件打交道,Qemu 将这些指令转译给真正的硬件。 正因为 Qemu 是纯软件实现的,所有的指令都要经 Qemu 过一手,性能非常低,所以,在生产环境中,大多数的做法都是配合 KVM 来完成

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

FPGA编译与部署方法全方位介绍

FPGA编译与部署是FPGA开发中的核心环节,涉及从代码编写、调试到将设计部署到FPGA硬件的全过程。这个流程需要经过创建项目、编写FPGA VI、模拟调试、编译生成比特流文件,最后将设计部署到硬件上运行。编译的特点在于并行执行能力、定制化硬件实现以及复杂的时钟管理。通过LabVIEW的FPGA模块和NI硬件,可以快速完成开发和部署,尤其适用于复杂控制与高性能数据处理系统。 1. FPG

FPGA开发:条件语句 × 循环语句

条件语句 if_else语句 if_else语句,用来判断是否满足所给定的条件,根据判断的结果(真或假)决定执行给出的两种操作之一。 if(表达式)语句; 例如: if(a>b) out1=int1; if(表达式)         语句1; else         语句2; 例如: if(a>b)out1=int1;elseout1=int2; if(表达式1) 语句1; els

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

定位cpu占用过高的线程和对应的方法

如何定位cpu占用过高的线程和对应的方法? 主要是通过线程id找到对应的方法。 1 查询某个用户cpu占用最高的进程号 top -u 用户名 2 查询这个进程中占用cpu最高的线程号 top –p 进程号-H    3 查询到进程id后把进程相关的代码打印到jstack文件 jstack -l pid > jstack.txt 4 在jstack文件中通过16进制的线程id搜索到