模块[camera]_RGB/HSV/YUV颜色空间模型总结

2024-06-13 13:38

本文主要是介绍模块[camera]_RGB/HSV/YUV颜色空间模型总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://blog.sina.com.cn/s/blog_679741950100ivz0.html

颜色通常用三个相对独立的属性来描述,三个独立变量综合作用,自然就构成一个空间坐标,这就是颜色空间。而颜色可以由不同的角度,用三个一组的不同属性加以描述,就产生了不同的颜色空间。但被描述的颜色对象本身是客观的,不同颜色空间只是从不同的角度去衡量同一个对象。

       颜色空间按照基本结构可以分两大类:基色颜色空间和色、亮分离颜色空间。前者的典型是 RGB,还包括 CMY、CMYK、CIE XYZ 等;后者包括 YCC/YUV、Lab、以及一批“色相类颜色空间”。CIE XYZ 是定义一切颜色空间的基准,很奇妙的是,它即属于基色颜色空间,也属于色、亮分离颜色空间,是贯穿两者的枢纽。色、亮分离颜色空间中的子类型“色相类颜色空间”,是把颜色分成一个表亮属性,和两个表色属性,其中有一个表色属性是色相,而色相以外的两个属性可以选用不同的变量来定义,而色相的概念不变,因此就构成一族共同使用色相属性,另加表亮属性和表色属性各一个组成的颜色空间,它们是颜色空间中的一个家族,暂且统称为 HSB 颜色空间。

      RGB颜色空间是一种大的分类,具体而言RGB空间还包含多种空间,其中sRGB是HP和Microsoft联合制定的标准RGB空间,除此之外还有Adobe RGB,Apple RGB,ColorMatch RGB等等,他们通过不同的方式表示RGB三种颜色,使得它们具有不同的色彩宽度,GAMMA值也是不一样的(看下一篇文章),具体这几种RGB的不同,我会在另外的文章中描述。     

      例如,对Lab模式是这样描述的:

      RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。而Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。 
  Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种色彩混合后将产生明亮的色彩。 
  Lab模式所定义的色彩最多,且与光线及设备无关


RGB颜色空间   
       计算机色彩显示器显示色彩的原理与彩色电视机一样,都是采用R、G、B相加混色的原理,通过发射出三种不同强度的电子束,使屏幕内侧覆盖的红、绿、蓝磷光材料发光而产生色彩的。这种色彩的表示方法称为RGB色彩空间表示。在多媒体计算机技术中,用的最多的是RGB色彩空间表示。
       根据三基色原理,用基色光单位来表示光的量,则在RGB色彩空间,任意色光F都可以用R、G、B三色不同分量的相加混合而成:

F=r [ R ] + g [ G ] + b [ B ]

fig5-4.gif (11080 bytes)


    RGB色彩空间还可以用一个三维的立方体来描述。

       我们可知自然界中任何一种色光都可由R、G、B三基色按不同的比例相加混合而成,当三基色分量都为0(最弱)时混合为黑色光;当三基色分量都为k(最强)时混合为白色光。任一色彩F是这个立方体坐标中的一点,调整三色系数r、g、b中的任一系数都会改变F的坐标值,也即改变了F的色值。RGB色彩空间采用物理三基色表示,因而物理意义很清楚,适合彩色显象管工作。然而这一体制并不适应人的视觉特点。因而,产生了其它不同的色彩空间表示法。

 

HSV颜色空间
       HSV(hue,saturation,value)颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于V=1。它包含RGB模型中的R=1,G=1,B=1三个面,所代表的颜色较亮。色彩H由绕V轴的旋转角给定。红色对应于角度0°,绿色对应于角度120°,蓝色对应于角度240°。在HSV颜色模型中,每一种颜色和它的补色相差180°。饱和度S取值从0到1,所以圆锥顶面的半径为1。HSV颜色模型所代表的颜色域是CIE色度图的一个子集,这个模型中饱和度为百分之百的颜色,其纯度一般小于百分之百。在圆锥的顶点(即原点)处,V=0,H和S无定义,代表黑色。圆锥的顶面中心处S=0,V=1,H无定义,代表白色。从该点到原点代表亮度渐暗的灰色,即具有不同灰度的灰色。对于这些点,S=0,H的值无定义。可以说,HSV模型中的V轴对应于RGB颜色空间中的主对角线。在圆锥顶面的圆周上的颜色,V=1,S=1,这种颜色是纯色。HSV模型对应于画家配色的方法。画家用改变色浓和色深的方法从某种纯色获得不同色调的颜色,在一种纯色中加入白色以改变色浓,加入黑色以改变色深,同时加入不同比例的白色,黑色即可获得各种不同的色调。

HSV颜色空间可以用一个圆锥空间模型来描述。

RGB和HSV颜色空间

 

从 RGB 到HSV 的转换

       设 (rgb) 分别是一个颜色的红、绿和蓝坐标,它们的值是在 0 到 1 之间的实数。设 max 等价于 rg 和 b中的最大者。设 min 等于这些值中的最小者。要找到在 HSV 空间中的 (hsv) 值,这里的 h ∈ [0, 360)是角度的色相角,而 sv ∈ [0,1] 是饱和度和亮度,计算为:

max=max(R,G,B) 
min=min(R,G,B) 
if R = max, H = (G-B)/(max-min) 
if G = max, H = 2 + (B-R)/(max-min) 
if B = max, H = 4 + (R-G)/(max-min) 

H = H * 60 
if H < 0, H = H + 360 

V=max(R,G,B) 
S=(max-min)/max

h 的值通常规范化到位于 0 到 360°之间。而 h = 0 用于 max = min 的(就是灰色)时候而不是留下 h 未定义。

以下为相应的VC代码:

void Rgb2Hsv(float R, float G, float B, float& H, float& S, float&V)
{
     // r,g,b values are from 0 to 1
    // h = [0,360], s = [0,1], v = [0,1]
    // if s == 0, then h = -1 (undefined)

    float min, max, delta,tmp;
    tmp = min(R, G);
    min = min( tmp, B );
    tmp = max( R, G);
    max = max(tmp, B );
    V = max; // v

    delta = max - min;

    if( max != 0 )
      S = delta / max; // s
    else
    {
       // r = g = b = 0 // s = 0, v is undefined
      S = 0;
      H = UNDEFINEDCOLOR;
      return;
    }
    if( R == max )
        H = ( G - B ) / delta; // between yellow & magenta
   else if( G == max )
        H = 2 + ( B - R ) / delta; // between cyan & yellow
   else
        H = 4 + ( R - G ) / delta; // between magenta & cyan

    H *= 60; // degrees
    if( H < 0 )
       H += 360;
}

 

YUV颜色空间

      YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。在现代彩色电视系统中,通常采用三管彩色摄影机或彩色CCD摄影机进行取像,然后把取得的彩色图像信号经分色、分别放大校正后得到RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送出去。这种色彩的表示方法就是所谓的YUV色彩空间表示。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有 Y信号分量而没有U、V信号分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的相容问题,使黑白电视机也能接收彩色电视信号。

优点作用

  YUV主要用于优化彩色视频信号的传输,使其向后相容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的频宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是透过RGB输入信号来建立的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面─色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB信号亮度值之同的差异。

  采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色电视信号。

  YUV与RGB相互转换的公式如下(RGB取值范围均为0-255)︰
  Y = 0.299R + 0.587G + 0.114B
  U = -0.147R - 0.289G + 0.436B
  V = 0.615R - 0.515G - 0.100B
  R = Y + 1.14V
  G = Y - 0.39U - 0.58V
  B = Y + 2.03U

这篇关于模块[camera]_RGB/HSV/YUV颜色空间模型总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057459

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费