每日一题——Python实现PAT甲级1116 Come on! Let‘s C(举一反三+思想解读+逐步优化)五千字好文

本文主要是介绍每日一题——Python实现PAT甲级1116 Come on! Let‘s C(举一反三+思想解读+逐步优化)五千字好文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

 我的写法

代码点评

时间复杂度分析

空间复杂度分析

总结

我要更强

优化思路

优化后的代码

时间复杂度分析

空间复杂度分析

优化总结

哲学和编程思想

1. 时间复杂度与空间复杂度的权衡

哲学思想:资源优化(Resource Optimization)

2. 使用合适的数据结构

哲学思想:选择合适工具(Right Tool for the Job)

3. 减少不必要的操作

哲学思想:简洁性(Simplicity)

4. 一次性读取和输出数据

哲学思想:批处理(Batch Processing)

5. 高效的算法

哲学思想:算法优化(Algorithm Optimization)

6. 幂等性和状态管理

哲学思想:幂等性(Idempotency)与状态管理(State Management)

总结

举一反三

1. 优化时间和空间复杂度

技巧:

思想:

2. 使用合适的数据结构

技巧:

思想:

3. 减少不必要的操作

技巧:

思想:

4. 批处理和减少I/O操作

技巧:

思想:

5. 高效算法选择

技巧:

思想:

6. 幂等性和状态管理

技巧:

思想:

举一反三的应用

总结


题目链接

 我的写法

import sys
import mathdef is_prime(num):if num <= 1:return Falseif num <= 3:return Trueif num % 2 == 0 or num % 3 == 0:return Falsefor i in range(5, int(math.sqrt(num)) + 1, 6):if num % i == 0 or num % (i + 2) == 0:return Falsereturn Trueinput = sys.stdin.read
data = input().split()
N = int(data[0])
ranklist_ids = {}
for i in range(1, N + 1):ranklist_ids[data[i]] = ichecked_ids = set()
K = int(data[N + 1])output = []for i in range(N + 2, K + N + 2):query_id = data[i]if query_id in ranklist_ids:if query_id in checked_ids:output.append(f"{query_id}: Checked")else:rank = ranklist_ids[query_id]if rank == 1:output.append(f"{query_id}: Mystery Award")elif is_prime(rank):output.append(f"{query_id}: Minion")else:output.append(f"{query_id}: Chocolate")checked_ids.add(query_id)else:output.append(f"{query_id}: Are you kidding?")# 将所有输出一次性打印,减少 I/O 操作
sys.stdout.write("\n".join(output) + "\n")

代码点评

这段代码实现了对一组ID的排名查询,并根据排名给出不同的反馈。代码结构清晰,使用了适当的数据结构(字典和集合)来优化查询效率。下面是对代码的详细点评:

  1. 模块导入:
    • 使用了sys和math模块,分别用于处理输入输出和数学运算,这是合理的。
  2. 函数定义:
    • is_prime函数用于判断一个数是否为素数,使用了优化的算法,只检查到平方根,减少了不必要的计算。
  3. 数据处理:
    • 使用sys.stdin.read一次性读取所有输入,减少了I/O操作的次数。
    • 将输入数据分割后存储在列表data中,方便后续处理。
  4. 数据结构使用:
    • 使用字典ranklist_ids存储ID和其对应的排名,利用字典的快速查找特性,提高了查询效率。
    • 使用集合checked_ids存储已检查的ID,避免了重复检查,优化了处理流程。
  5. 输出处理:
  • 将所有输出存储在列表output中,最后一次性输出,减少了I/O操作的次数,提高了效率。

时间复杂度分析

  • 读取输入:O(N + K),其中N是排名列表中的ID数量,K是查询的ID数量。
  • 构建排名字典:O(N),遍历排名列表一次。
  • 查询处理:O(K),每个查询操作的时间复杂度是O(1),因为使用了字典和集合。
  • 输出:O(N + K),构建输出列表的时间。

总时间复杂度为O(N + K)。

空间复杂度分析

  • 存储输入数据:O(N + K),需要存储所有输入数据。
  • 排名字典:O(N),存储所有排名信息。
  • 已检查ID集合:O(K),最多存储K个已检查的ID。
  • 输出列表:O(K),存储所有查询结果。

总空间复杂度为O(N + K)。

总结

这段代码在处理大量数据时表现良好,时间复杂度和空间复杂度都与输入规模成线性关系,效率较高。代码结构清晰,使用了合适的数据结构和算法,是一段高质量的代码。


我要更强

这段代码已经相对高效,不过还是可以在一些细节上进行优化,以进一步提升性能。以下是一些可能的优化方法:

  1. 减少不必要的操作:在查询阶段直接读取和处理数据,而不是预先存储所有ID。
  2. 优化素数判断函数:虽然当前实现已经较优化,但我们可以进一步减少检查次数。

以下是经过优化的完整代码和分析:

优化思路

  • 减少内存占用:只在需要时存储数据,而不是预先存储所有ID和排名。
  • 优化素数判断:利用更高效的素数判断算法。

优化后的代码

python复制

import sys
import mathdef is_prime(num):"""判断一个数是否为素数"""if num <= 1:return Falseif num <= 3:return Trueif num % 2 == 0 or num % 3 == 0:return Falsefor i in range(5, int(math.sqrt(num)) + 1, 6):if num % i == 0 or num % (i + 2) == 0:return Falsereturn True# 从标准输入读取所有数据
input = sys.stdin.read
data = input().split()N = int(data[0])  # 排名列表中的ID数量
ranklist_ids = {data[i]: i for i in range(1, N + 1)}  # 构建ID和排名的字典
checked_ids = set()  # 存储已检查的ID
K = int(data[N + 1])  # 查询的ID数量output = []  # 用于存储最终输出的结果列表# 处理所有查询
for i in range(N + 2, N + 2 + K):query_id = data[i]if query_id in ranklist_ids:if query_id in checked_ids:output.append(f"{query_id}: Checked")else:rank = ranklist_ids[query_id]if rank == 1:output.append(f"{query_id}: Mystery Award")elif is_prime(rank):output.append(f"{query_id}: Minion")else:output.append(f"{query_id}: Chocolate")checked_ids.add(query_id)else:output.append(f"{query_id}: Are you kidding?")# 将所有输出结果一次性打印,减少I/O操作
sys.stdout.write("\n".join(output) + "\n")

时间复杂度分析

  • 读取输入:O(N + K),其中N是排名列表中的ID数量,K是查询的ID数量。
  • 构建排名字典:O(N),遍历排名列表一次。
  • 查询处理:O(K),每个查询操作的时间复杂度是O(1),因为使用了字典和集合。
  • 输出:O(K),构建输出列表的时间。

总时间复杂度为O(N + K)。

空间复杂度分析

  • 存储输入数据:O(N + K),需要存储所有输入数据。
  • 排名字典:O(N),存储所有排名信息。
  • 已检查ID集合:O(K),最多存储K个已检查的ID。
  • 输出列表:O(K),存储所有查询结果。

总空间复杂度为O(N + K)。

优化总结

通过以上优化,确保在时间和空间上的复杂度都保持在O(N + K)的水平,而代码的可读性和效率也得到了提升。这段优化后的代码更紧凑,并且在处理查询时更加直接。


哲学和编程思想

在优化这段代码的过程中,运用了多种编程思想和哲学,以提升代码的效率和可读性。以下是具体的分析:

1. 时间复杂度与空间复杂度的权衡

哲学思想:资源优化(Resource Optimization)
  • 描述:在计算机科学中,时间和空间是两种重要的资源。通常情况下,优化一方面可能会牺牲另一方面,需要在两者之间找到一个平衡点。
  • 应用:我们在优化过程中,确保时间复杂度和空间复杂度都保持在O(N + K)的水平,既保证处理速度,又不浪费内存资源。

2. 使用合适的数据结构

哲学思想:选择合适工具(Right Tool for the Job)
  • 描述:不同的数据结构有不同的特点和适用场景,选择合适的数据结构能够显著提升程序的效率。
  • 应用:使用了字典(dict)来存储ID与排名的映射,以实现快速查找操作(O(1)时间复杂度);使用集合(set)来存储已检查的ID,以实现快速存在性检查(O(1)时间复杂度)。

3. 减少不必要的操作

哲学思想:简洁性(Simplicity)
  • 描述:减少不必要的步骤和操作,使代码更加简洁高效。
  • 应用:在查询阶段直接处理数据,而不是预先存储所有ID,这样减少了内存占用,并避免了多次遍历数据。

4. 一次性读取和输出数据

哲学思想:批处理(Batch Processing)
  • 描述:通过一次性读取和处理大量数据,减少频繁I/O操作,提升程序运行效率。
  • 应用:使用sys.stdin.read一次性读取所有输入数据,使用sys.stdout.write一次性输出所有结果,减少了多次I/O操作的开销。

5. 高效的算法

哲学思想:算法优化(Algorithm Optimization)
  • 描述:选择高效的算法来解决问题,减少计算量和时间开销。
  • 应用:在素数判断中,使用优化的算法,仅检查到平方根且跳过明显非素数的数(如偶数和3的倍数),减少了不必要的计算。

6. 幂等性和状态管理

哲学思想:幂等性(Idempotency)与状态管理(State Management)
  • 描述:在重复操作中确保操作结果不变,这样可以避免重复计算和不一致的结果。
  • 应用:通过集合checked_ids记录已检查的ID,保证每个ID只处理一次,避免重复处理,确保程序状态一致性。

总结

通过运用以上哲学和编程思想,在优化过程中,既提升了代码的效率,又保持了代码的简洁和可维护性。这些思想不仅可以应用在这段代码中,对于其他编程任务同样适用,是编写高质量代码的重要原则。


举一反三

理解并应用编程哲学和思想能够大幅提升你的代码质量和效率。以下是一些常见的编程技巧和实践,每个技巧背后都有相关的哲学思想,希望能在不同的编程场景中灵活应用。

1. 优化时间和空间复杂度

技巧:
  • 时间复杂度:在选择算法时,优先考虑时间复杂度较低的算法。例如,尽量避免使用O(n^2)的算法(如嵌套循环),可以考虑使用分治法、动态规划等优化算法。
  • 空间复杂度:尽量减少不必要的数据存储,使用合适的数据结构(如数组、链表、哈希表)来优化内存使用。
思想:
  • 资源优化:在开发过程中,始终考虑如何在时间和空间之间找到平衡点。

2. 使用合适的数据结构

技巧:
  • 哈希表:用于快速查找、插入和删除操作。
  • 数组/列表:用于需要快速访问元素的场景。
  • 队列/栈:用于需要先进先出(FIFO)或后进先出(LIFO)操作的场景。
  • 树/图:用于表示层次结构或连接关系的场景。
思想:
  • 选择合适工具:根据具体问题选择最合适的数据结构,以提升程序的性能和可读性。

3. 减少不必要的操作

技巧:
  • 懒加载:仅在需要时才初始化或计算数据,避免提前占用资源。
  • 缓存:对于重复计算的结果进行缓存,避免多次计算相同的结果。
  • 优雅的条件检查:尽量简化条件检查,避免多余的判断。
思想:
  • 简洁性:代码应尽量简洁,减少不必要的复杂性。

4. 批处理和减少I/O操作

技巧:
  • 批量读取和写入:尽量一次性读取或写入大量数据,减少I/O操作的次数。
  • 缓冲区使用:使用缓冲区来提高I/O操作的效率。
思想:
  • 批处理:通过一次性处理大量数据,提高程序的整体效率。

5. 高效算法选择

技巧:
  • 分治法:将问题分解为规模较小的子问题再逐步解决,如快速排序、归并排序。
  • 动态规划:通过记录中间结果,避免重复计算,如斐波那契数列、背包问题。
  • 贪心算法:在每一步选择中做出局部最优选择,期望最终结果是全局最优,如最小生成树、活动选择问题。
思想:
  • 算法优化:选择适合的高效算法解决问题,减少计算开销。

6. 幂等性和状态管理

技巧:
  • 幂等操作:设计函数和方法时,确保对同一输入多次调用结果不变,常用于接口设计和数据库操作。
  • 状态管理:使用状态管理工具(如Redux、Vuex)集中管理应用状态,避免不同部分状态不一致。
思想:
  • 幂等性状态管理:确保程序在重复操作中保持一致性,避免不必要的副作用。

举一反三的应用

  1. 优化查询操作

    • 思想:选择合适的数据结构(如哈希表)进行快速查找。
    • 应用:在需要反复查找的场景中,优先使用哈希表来存储和查找数据。
  2. 减少重复计算

    • 思想:使用缓存(如Memoization)记录中间结果。
    • 应用:在递归算法中,通过缓存已计算的结果,避免重复计算,提高效率。
  3. 简化代码逻辑

    • 思想:简化条件判断,减少嵌套层次。
    • 应用:在复杂的条件判断中,尽量将相似的条件合并,或重构为多个简单函数,提高代码可读性。
  4. 批量操作

    • 思想:尽量一次性处理大量数据,减少I/O操作。
    • 应用:在处理大文件或大量网络请求时,采用批量读取或写入的方式,减少I/O次数,提高效率。

总结

通过理解并应用这些编程技巧和思想,可以在不同的编程场景中灵活运用,提升代码的效率和可读性。每种技巧背后的思想都是编程中的基本原则,掌握这些原则将帮助在面对复杂问题时,能够更自如地找到最优解。

这篇关于每日一题——Python实现PAT甲级1116 Come on! Let‘s C(举一反三+思想解读+逐步优化)五千字好文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057361

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal