深度学习 --- stanford cs231 编程作业(assignment1,Q3: softmax classifier)

本文主要是介绍深度学习 --- stanford cs231 编程作业(assignment1,Q3: softmax classifier),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

stanford cs231 编程作业(assignment1,Q3: softmax classifier

        softmax classifier和svm classifier的assignment绝大多部分都是重复的,这里只捡几个重点。

1,softmax_loss_naive函数,尤其是dW部分

1,1 正向传递

第i张图的在所有分类下的得分:

S=X_{i}W

softmax概率,其中C是总类别,y[i]是样本 i 的真实标签:

P(k=y_{i})=\frac{e^{S[k]}}{\sum_{j=1}^{c}e^{S[j]}}=\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}}

第i张图的softmax损失函数:

L_{i}=-log(P(k=y_{i}))

所有样本softmax的加权和:

L=\frac{1}{N}\sum_{i=1}^{N}L_{i}+Reg

Reg=\lambda R(W)=\lambda W^{2}

1,2 反向传递(需区分正确分类与其他分类)

1,2,1 对正确分类S[y[i]]而言:

\frac{\partial L}{\partial W}=\frac{\partial L}{\partial L_{i}}\cdot \frac{\partial L_{i}}{\partial P(k=y_{i})}\cdot \frac{\partial P(k=y_{i})}{\partial S[y[i]]}\cdot \frac{\partial S[y[i]]}{\partial W}

其中:

\frac{\partial L}{\partial L_{i}}=1/N\sum_{i=1}^{N}

\frac{\partial L_{i}}{\partial P(k=y_{i})}=-\frac{1}{P(k=y_{i})}

\frac{\partial P(k=y_{i})}{\partial S[y[i]]}=\frac{\partial (\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}})}{\partial S[y[i]]}=\frac{e^{S[y[i]]}\cdot \sum_{j=1}^{c}e^{S[j]}-e^{S[y[i]]}\cdot e^{S[y[i]]}}{(\sum_{j=1}^{c}e^{S[j]})^{2}}=\frac{e^{S[y[i]]}(\sum_{j=1}^{c}e^{S[j]}-e^{S[y[i]]})}{(\sum_{j=1}^{c}e^{S[j]})^{2}}=\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}}\cdot \frac{\sum_{j=1}^{c}e^{S[j]}-e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}}=\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}}\cdot (1-\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}})=P(k=y_{i})\cdot (1-P(k=y_{i}))

\frac{\partial S[y[i]]}{\partial W}=X_{i}

整合后: 

\frac{\partial L}{\partial W}=\frac{\partial L}{\partial L_{i}}\cdot \frac{\partial L_{i}}{\partial P(k=y_{i})}\cdot \frac{\partial P(k=y_{i})}{\partial S[y[i]]}\cdot \frac{\partial S[y[i]]}{\partial W}=1/N\sum_{i=1}^{N}\cdot -\frac{1}{P(k=y_{i})}\cdot P(k=y_{i})\cdot (1-P(k=y_{i}))\cdot X_{i}=1/N\sum_{i=1}^{N}(P(k=y_{i})-1)X_{i}

Tips:商函数的导数

(\frac{f}{g})'=\frac{f'g-fg'}{g^{2}}

1,2,2 对其他分类S[j],j\neq y_{i}而言:

\frac{\partial L}{\partial W}=\frac{\partial L}{\partial L_{i}}\cdot \frac{\partial L_{i}}{\partial P(k=y_{i})}\cdot \frac{\partial P(k=y_{i})}{\partial S[j]}\cdot \frac{\partial S[j]}{\partial W}

其中:

\frac{\partial L}{\partial L_{i}}=1/N\sum_{i=1}^{N}

\frac{\partial L_{i}}{\partial P(k=y_{i})}=-\frac{1}{P(k=y_{i})}

\frac{\partial P(k=y_{i})}{\partial S[j]}=\frac{\partial (\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}})}{\partial S[y[i]]}=\frac{0\cdot \sum_{j=1}^{c}e^{S[j]}-e^{S[y[i]]}\cdot e^{S[j]}}{(\sum_{j=1}^{c}e^{S[j]})^{2}}=\frac{-e^{S[y[i]]}\cdot e^{S[j]}}{(\sum_{j=1}^{c}e^{S[j]})^{2}}=-\frac{e^{S[y[i]]}}{\sum_{j=1}^{c}e^{S[j]}}\cdot \frac{e^{S[j]}}{\sum_{j=1}^{c}e^{S[j]}}=-P(k=y_{i})\cdot P(k=j)

\frac{\partial S[y[i]]}{\partial W}=X_{i}

整合后: 

\frac{\partial L}{\partial W}=\frac{\partial L}{\partial L_{i}}\cdot \frac{\partial L_{i}}{\partial P(k=y_{i})}\cdot \frac{\partial P(k=y_{i})}{\partial S[j]}\cdot \frac{\partial S[j]}{\partial W}=1/N\sum_{i=1}^{N}\cdot -\frac{1}{P(k=y_{i})}\cdot -P(k=y_{i})\cdot P(k=j)\cdot X_{i}=1/N\sum_{i=1}^{N}P(k=j)X_{i}

2,学习率(learning rate)与正则化约束的系数(regularization strength)

2,1 初次尝试

计算结果:

观察:

        根据初次尝试的计算结果得出,当lr=1e-6时和reg=1e3时,验证集的准确率最高接近40%的准确率。

2,2 基于初次尝试的结果重新选择lr和reg

       

         在lr=1e-6时和reg=1e3的附近分别取了几个值,得到如下结果:

观察:

        从上面的结果来看当lr在e-6这个数量级上,且reg在e2这个数量级上时,accuracy是高的。

2,3 最后一次尝试

        因为按照官方的要求,只要验证集的正确类能够达到35%就够了。但基于上面的结果似乎还能再逼近一下极限。

 这次,lr的调整就限制在了e-6。reg的值域基本上是在5e2~1e3之间浮动。

实验结果:

观察:

        总的正确率都很高,最大值出现在lr=2e-6,reg=7e2。 

思考题:

每一类所对应的权重矩阵W的可视化: 

 

可参考课件,每个W矩阵都是一个和图像同等大小的特征:


3,Python code

3,1 softmax function(code里面有较为详细的注释)

from builtins import range
import numpy as np
from random import shuffle
from past.builtins import xrange
import ipdbdef softmax_loss_naive(W, X, y, reg):"""Softmax loss function, naive implementation (with loops)Inputs have dimension D, there are C classes, and we operate on minibatchesof N examples.Inputs:- W: A numpy array of shape (D, C) containing weights.- X: A numpy array of shape (N, D) containing a minibatch of data.- y: A numpy array of shape (N,) containing training labels; y[i] = c meansthat X[i] has label c, where 0 <= c < C.- reg: (float) regularization strengthReturns a tuple of:- loss as single float- gradient with respect to weights W; an array of same shape as W"""# Initialize the loss and gradient to zero.loss = 0.0dW = np.zeros_like(W)############################################################################## TODO: Compute the softmax loss and its gradient using explicit loops.     ## Store the loss in loss and the gradient in dW. If you are not careful     ## here, it is easy to run into numeric instability. Don't forget the        ## regularization!                                                           ############################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****num_samples = X.shape[0]num_classes = W.shape[1]for i in range(num_samples): Xi=X[i,:]#求每张图的logitslogits=Xi@W#当logit很大时,指数函数e^x会变得非常大,这很容易导致计算结果超出当前类型的最大值。#因此,在计算exp之前要对原始数据logits做如下处理。logits_shifted = logits-np.max(logits)exp_logits =np.exp(logits_shifted)#求logits向量的指数#指数化后再归一化得到概率sum_exp=np.sum(exp_logits)P=exp_logits/sum_exp#取出正确类的概率correct_class_score=P[y[i]]#正确类概率的负自然对数Li=-np.log(correct_class_score)#sum of all samplesloss+=Li#Calc grad#矩阵W共有D行,C列,所以每列表示一个分类,因此在计算dW时应按列选择。for j in range(num_classes):if j == y[i]:dW[:,j]+=(P[j]-1)*Xielse:dW[:,j]+=P[j]*Xi# Avgloss/=num_samplesdW/=num_samples# +Regloss+=reg*np.sum(W*W)dW+=2*reg*W# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****return loss, dWdef softmax_loss_vectorized(W, X, y, reg):"""Softmax loss function, vectorized version.Inputs and outputs are the same as softmax_loss_naive."""# Initialize the loss and gradient to zero.loss = 0.0dW = np.zeros_like(W)############################################################################## TODO: Compute the softmax loss and its gradient using no explicit loops.  ## Store the loss in loss and the gradient in dW. If you are not careful     ## here, it is easy to run into numeric instability. Don't forget the        ## regularization!                                                           ############################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****num_samples = X.shape[0]num_classes = W.shape[1]logits=X@W #NxD,DxC=NxClogits_shifted = logits-np.max(logits,axis=1,keepdims=True)# NxC矩阵 - 按行(类)取出最大值exp_logits =np.exp(logits_shifted)#NxCsum_exp=np.sum(exp_logits,axis=1,keepdims=True)# 按行(类)求和,得到一个列向量,Nx1P=exp_logits/sum_exp# 按列计算得到NxC矩阵correct_class_score=P[range(num_samples),y]#找到每行正确类的概率,得到一个列向量L=-np.log(correct_class_score)#对正确类的概率进行进一步处理,结果依然是一个列向量loss+=np.sum(L)#列向量所有元素的和#Calc grad'''输入:矩阵P=NxC和矩阵X=NxD输出:矩阵dW=DxC对输入矩阵P而言,P=NxC,每行是一张图的c类的概率,共N张图。而每张图的dW中的全部列(一列表示一类)都是由P[j]*Xi或(P[j]-1)*Xi决定的。详细来说,第一张图对dW第一列的贡献为P[j]*X1或(P[j]-1)*X1。第二张图对dW第一列的贡献也是P[j]*X2或(P[j]-1)*X2。第n张图对dW第一列的贡献也是P[j]*Xn或(P[j]-1)*Xn。依此类推,全部图像对dW第一列的贡献为N个P[j]*Xi或(P[j]-1)*Xi的线性组合。另一方面,计算结果dW应该是一个DxC的矩阵,而X的维度是NxD。所以,矩阵乘法的顺序只能是X'xP。其中上面提到的Xi为矩阵X'的第i列,故而前面的线性组合是对矩阵X各列的操作。根据矩阵的乘法,X'xP=dW的每一列,都是基于P的某一列中的所有元素为权重去计算的。具体来说,X'xP的第一列就是以P的第一列中的元素为权重去计算的。其中第一列中的第一个元素就是第一张图的P[j]或P[j]-1,第一列中的第二个元素就是第二张图的P[j]或P[j]-1,总共有多少张图,第一列就有多少个元素。他们分别乘以X1,X2,...Xn.得到了第一列的结果。'''P[np.arange(num_samples), y] -= 1 #提取了每个样本(即每行)正确类别的概率,然后减去1,得到P[j]-1,其他类别保持P[j]不变dW=X.T@P# Avgloss/=num_samplesdW/=num_samples# +Regloss+=reg*np.sum(W*W)dW+=2*reg*W# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****return loss, dW

  (全文完) 

--- 作者,松下J27

 参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,Assignment 1

3,cs231n/assignment1/svm.ipynb at master · mantasu/cs231n · GitHub

4,CS231/assignment1/svm.ipynb at master · MahanFathi/CS231 · GitHub

(配图与本文无关)

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于深度学习 --- stanford cs231 编程作业(assignment1,Q3: softmax classifier)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056973

相关文章

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3