GiantPandaCV | 提升分类模型acc(二):图像分类技巧实战

2024-06-12 21:36

本文主要是介绍GiantPandaCV | 提升分类模型acc(二):图像分类技巧实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“GiantPandaCV”,仅用于学术分享,侵权删,干货满满。

原文链接:提升分类模型acc(二):图像分类技巧实战

上一篇文章GiantPandaCV | 提升分类模型acc(一):BatchSize&LARS-CSDN博客探讨了训练的bs大小和LARS对精度的影响,本篇文章是本系列的第二篇文章,主要是介绍张航的Bag of Tricks for Image Classification 中的一些方法以及自己实际使用的一些trick。

论文链接:https://arxiv.org/abs/1812.01187
R50-vd代码: https://github.com/FlyEgle/ResNet50vd-pytorch
知乎专栏: https://zhuanlan.zhihu.com/p/409920002

1 前言

如何提升业务分类模型的性能,一直是个难题,毕竟没有99.999%的性能都会带来一定程度的风险,所以很多时候只能通过控制阈值来调整准召以达到想要的效果。本系列主要探究哪些模型trick和数据的方法可以大幅度让你的分类性能更上一层楼,不过要注意一点的是,tirck不一定是适用于不同的数据场景的,但是数据处理方法是普适的。

ps: 文章比较长,不喜欢长文可以直接跳到结尾看结论。

简单的回顾一下第一篇文章的结论: 使用大的batchsize训练会略微降低acc,可以使用LARS进行一定程度的提升,但是需要进行适当的微调,对于业务来说,使用1k的batchsize比较合适。

2 实验配置

  • 模型: ResNet50, CMT-tiny

  • 数据: ImageNet1k & 业务数据

  • 环境: 8xV100

ps: 简单的说明一下,由于部分实验是从实际的业务数据得到的结论,所以可能并不是完全适用于别的数据集,domain不同对应的方法也不尽相同。

本文只是建议和参考,不能盲目的跟从。imagenet数据集的场景大部分是每个图片里面都会包含一个物体,也就是有主体存在的,笔者这边的业务数据的场景很多是理解性的,更加抽象,也更难。

3 Bag of Tricks

3.1 数据增强

  • 朴素数据增强

通用且常用的数据增强有random flipcolorjitterrandom crop,基本上可以适用于任意的数据集,colorjitter注意一点是一般不给hue赋值。

  • RandAug

AutoAug系列之RandAug,相比autoaug的是和否的搜索策略,randaug通过概率的方法来进行搜索,对于大数据集的增益更强,迁移能力更好。实际使用的时候,直接用搜索好的imagnet的策略即可。

  • mixup & cutmix

mixup和cutmix均在imagenet上有着不错的提升,实际使用发现,cutmix相比mixup的通用性更强,业务数据上mixup几乎没有任何的提升,cutmix会提高一点点。不过两者都会带来训练时间的开销, 因为都会导致简单的样本变难,需要更多的iter次数来update,除非0.1%的提升都很重要,不然个人觉得收益不高。在物体识别上,两者可以一起使用。公式如下:

  • gaussianblur和gray这些方法,除非是数据集有这样的数据,不然实际意义不大,用不用都没啥影响。

实验结论:

  • 20% imagenet数据集 & CMT-tiny

  • 业务数据上(ResNet50) autoaug&randaug没有任何的提升(主要问题还是domain不同,搜出来的不适用),cutmix提升很小(适用于物体而不是理解)。

3.2 学习率衰减

退火方法常用于图像复原等用于L1损失的算法,有着不错的性能表现。

个人常用的方法就是cosinedecay,比较喜欢最后的acc曲线像一条"穿天猴", 不过要相对多训练几k个iter,cosinedecay在最后的acc上升的比较快,前期的会比较缓慢。

3.3 跨卡同步bn&梯度累加

这两个方法均是针对卡的显存比较小,batchsize小(batchszie总数小于32)的情况。

  • SyncBN

虽然笔者在训练的时候采用的是ddp,实际上就是数据并行训练,每个卡的batchnorm只会更新自己的数据,那么实际上得到的running_mean和running_std只是局部的而不是全局的。

如果bs比较大,那么可以认为局部和全局的是同分布的,如果bs比较小,那么会存在偏差。

所以需要SyncBN同步一下mean和std以及后向的更新。

  • GradAccumulate

    梯度累加和同步BN机制并不相同,也并不冲突,同步BN可以用于任意的bs情况,只是大的bs下没必要用。

    跨卡bn则是为了解决小bs的问题所带来的性能问题,通过loss.backward的累加梯度来达到增大bs的效果,由于bn的存在只能近似不是完全等价。代码如下:

 for idx, (images, target) in enumerate(train_loader):images = images.cuda()target = target.cuda()outputs = model(images)losses = criterion(outputs, target)loss = loss/accumulation_steps
loss.backward()
if((i+1)%accumulation_steps) == 0:
optimizer.step()
optimizer.zero_grad()
```backward```是bp以及保存梯度,```optimizer.step```是更新weights,由于accumulation_steps,所以需要增加训练的迭代次数,也就是相应的训练更多的epoch。

3.4 标签平滑

LabelSmooth目前应该算是最通用的技术了

优点如下:

  • 可以缓解训练数据中错误标签的影响;

  • 防止模型过于自信,充当正则,提升泛化性。

但是有个缺点,使用LS后,输出的概率值会偏小一些,这会使得如果需要考虑recall和precision,卡阈值需要更加精细。

代码如下:

class LabelSmoothingCrossEntropy(nn.Module):"""NLL loss with label smoothing."""def __init__(self, smoothing=0.1):"""Constructor for the LabelSmoothing module.:param smoothing: label smoothing factor"""super(LabelSmoothingCrossEntropy, self).__init__()assert smoothing < 1.0self.smoothing = smoothingself.confidence = 1. - smoothingdef forward(self, x, target):logprobs = F.log_softmax(x, dim=-1)nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))nll_loss = nll_loss.squeeze(1)smooth_loss = -logprobs.mean(dim=-1)loss = self.confidence * nll_loss + self.smoothing * smooth_lossreturn loss.mean()

4 ResNet50-vd

ResNet50vd是由张航等人所提出的,相比于ResNet50,改进点如下:

  1. 头部的conv7x7改进为3个conv3x3,直接使用7x7会损失比较多的信息,用多个3x3来缓解。

  2. 每个stage的downsample,由(1x1 s2)->(3x3)->(1x1)修改为(1x1)->(3x3 s2)->(1x1), 同时修改shortcut从(1x1 s2)avgpool(2) + (1x1)。1x1+s2会造成信息损失,所以用3x3和avgpool来缓解。

实验结论:

模型数据epochtrickacc@top-1
R50-vdimagenet1k300aug+mixup+cosine+ls78.25%

上面的精度是笔者自己跑出来的比paper中的要低一些,不过paper里面用了蒸馏,相比于R50,提升了将近2个点,推理速度和FLOPs几乎没有影响,所以直接用这个来替换R50了,个人感觉还算不错,最近的业务模型都在用这个。

代码和权重在git上,可以自行取用,ResNet50vd-pytorch。

5 结论

  • LabelSmooth, CosineLR都可以用做是通用trick不依赖数据场景。

  • Mixup&cutmix,对数据场景有一定的依赖性,需要多次实验。

  • AutoAug,如果有能力去搜的话,就不用看笔者写的了,用就vans了。不具备搜的条件的话,如果domain和imagenet相差很多,那考虑用一下randaug,如果没效果,autoaug这个系列可以放弃。

  • bs比较小的情况,可以试试Sycnbn和梯度累加,要适当的增加迭代次数。

6 结束语

本文是提升分类模型acc系列的第二篇,后续会讲解一些通用的trick和数据处理的方法,敬请关注。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于GiantPandaCV | 提升分类模型acc(二):图像分类技巧实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055396

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举