结构化预测

2024-06-12 20:48
文章标签 预测 结构化

本文主要是介绍结构化预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面介绍一下结构化预测(structured prediction)的概念以及常见的参数学习方法:
1.概念:
结构化预测(structured prediction)是由SVM发展而来的。SVM是一种最大间隔(max-margin)的方法,最擅长处理二分类问题,后来也被用于处理多分类问题。SVM的优点在于有很好的理论基础,即它的泛化能力很强。它的缺点在于1)训练复杂度高;2)不能用于预测结构化问题。
结构化问题的例子有很多:给定一个句子,找出它对应的依存树(dependency tree);对一个图进行分割(image segmentation)等。
结构化预测(structured prediction)通过修改SVM的约束条件以及目标函数,将SVM从二分类问题扩展到可以预测结构化问题。一种常见的表述方法如下:


约束条件的意思是:对于任何一个学习用例,数据集的标注结果应该比模型预测的结果都要好!


2.参数学习方法
参数学习方法有很多:
structured perceptron(Collins, 2002)
stochastic subgradient(Ratliff, 2007)
extra-gradient(Taskar, 2006)
cutting-plane algorithms(Joachims, 2009)
Dual decomposition(Meshi, 2010)


下边是关于structured prediction的reading list:

[2005 ICML]integer linear programming inference for conditional random fields.pdf

[2005 IJCAI]learning and inference over constrained output.pdf

[2006 EMNLP]competitive generative models with structure learning for NLP classifiction tasks.pdf

[2007]Pegasos-primal estimated subgradient solver for svm.pdf

[2007]subgradient methods for structured prediction.pdf

[2008 ICML]training structural svms when exact inference is intractable.pdf

[2008 NIPS]strctured learning with approximate inference.pdf

[2009 ICML]polyhedral outer approximations with application to natural language parsing.pdf

[2009 machine learning]piecewise training for structured prediction.pdf

[2010 ICML]learning effieicently with approximate inference via dual losses.pdf

[2012 ICML]efficient decomposed learning for structured prediction.pdf

这篇关于结构化预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055298

相关文章

仕考网:结构化面试流程介绍

(一)结构化面试 结构化面试,也叫做标准化面试,考官按照预先设定好的一套试题以问答方式与应试者当面交谈,根据应试者的言语、行为表现,对其相关能力和个性特征作出相应评价。 (二)考试流程 抵达考场——审核抽签——面试候考——进入考场——面试答题——考生退场——计分审核 (三)答题技巧 1.声音洪亮,音量可以比平时说话声音大一点。 2.语速不要过快,语速快容易卡顿,而且不便于考官听清答

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

结构化开发方法的三种基本控制结构

结构化开发方法概述 什么是结构化开发方法? 结构化开发方法是一种程序设计和系统开发的理念,旨在通过使用清晰、可预测的控制结构来提高程序的可读性、可维护性和可靠性。该方法强调使用标准化的编程结构,以减少程序中的错误并提高代码的逻辑清晰度。 结构化编程的历史背景 结构化编程(Structured Programming)这一概念最早由计算机科学家艾兹赫尔·戴克斯特拉(Edsger W. Dij

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测 目录 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SS

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode:486. 预测赢家 一、递归 注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积