Mahout源码分析之 -- 文档向量化TF-IDF

2024-06-12 20:18

本文主要是介绍Mahout源码分析之 -- 文档向量化TF-IDF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Mahout之SparseVectorsFromSequenceFiles源码分析

一、原理

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)。

词频 (TF) 指的是某一个给定的词语在文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)

逆向文件频率(IDF)是一个词语普遍重要性的度量,其主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。

对于在某一特定文件里的词语  来说,它的重要性可表示为:


以上式子中  是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和(分母也可以是词出现次数的最大值)。

逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到:


其中

  • |D|:语料库中的文件总数
  • :包含词语的文件数目(即的文件数目)如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用

然后


某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

二、源码分析

目标:将一个给定的sequence文件集合转化为SparseVectors

1、对文档分词

1.1)使用最新的{@link org.apache.lucene.util.Version}创建一个Analyzer,用来下文1.2分词;

复制代码
      Class<? extends Analyzer> analyzerClass = StandardAnalyzer.class;if (cmdLine.hasOption(analyzerNameOpt)) {String className = cmdLine.getValue(analyzerNameOpt).toString();analyzerClass = Class.forName(className).asSubclass(Analyzer.class);// try instantiating it, b/c there isn't any point in setting it if// you can't instantiate it
        AnalyzerUtils.createAnalyzer(analyzerClass);}
复制代码

1.2)使用{@link StringTuple}将input documents转化为token数组(input documents必须是{@link org.apache.hadoop.io.SequenceFile}格式);

DocumentProcessor.tokenizeDocuments(inputDir, analyzerClass, tokenizedPath, conf);

输入:inputDir     输出:tokenizedPath

SequenceFileTokenizerMapper

复制代码
 //将input documents按Analyzer进行分词,并将分得的词放在一个StringTuple中TokenStream stream = analyzer.tokenStream(key.toString(), new StringReader(value.toString()));CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class);stream.reset();StringTuple document = new StringTuple();//StringTuple是一个能够被用于Hadoop Map/Reduce Job的String类型有序Listwhile (stream.incrementToken()) {if (termAtt.length() > 0) {document.add(new String(termAtt.buffer(), 0, termAtt.length()));}}
复制代码

2、创建TF向量(Term Frequency Vectors)---多个Map/Reduce Job

复制代码
        DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath,outputDir,tfDirName,conf,minSupport,maxNGramSize,minLLRValue,-1.0f,false,reduceTasks,chunkSize,sequentialAccessOutput,namedVectors);
复制代码

2.1)全局词统计(TF)

startWordCounting(input, dictionaryJobPath, baseConf, minSupport);

使用Map/Reduce并行地统计全局的词频,这里只考虑(maxNGramSize == 1) 

输入:tokenizedPath   输出:wordCountPath

TermCountMapper

复制代码
  //统计一个文本文档中的词频OpenObjectLongHashMap<String> wordCount = new OpenObjectLongHashMap<String>();for (String word : value.getEntries()) {if (wordCount.containsKey(word)) {wordCount.put(word, wordCount.get(word) + 1);} else {wordCount.put(word, 1);}}wordCount.forEachPair(new ObjectLongProcedure<String>() {@Overridepublic boolean apply(String first, long second) {try {context.write(new Text(first), new LongWritable(second));} catch (IOException e) {context.getCounter("Exception", "Output IO Exception").increment(1);} catch (InterruptedException e) {context.getCounter("Exception", "Interrupted Exception").increment(1);}return true;}});
复制代码

TermCountCombiner:( 同 TermCountReducer)

TermCountReducer

复制代码
//汇总所有的words和单词的weights,并将同一word的权重sumlong sum = 0;for (LongWritable value : values) {sum += value.get();}if (sum >= minSupport) {//TermCountCombiner没有这个过滤)context.write(key, new LongWritable(sum));}
复制代码

2.2)创建词典

 List<Path> dictionaryChunks;dictionaryChunks =createDictionaryChunks(dictionaryJobPath, output, baseConf, chunkSizeInMegabytes, maxTermDimension);

读取2.1词频Job的feature frequency List,并给它们指定id

输入:wordCountPath   输出:dictionaryJobPath

复制代码
 /*** Read the feature frequency List which is built at the end of the Word Count Job and assign ids to them.* This will use constant memory and will run at the speed of your disk read*/private static List<Path> createDictionaryChunks(Path wordCountPath,Path dictionaryPathBase,Configuration baseConf,int chunkSizeInMegabytes,int[] maxTermDimension) throws IOException {List<Path> chunkPaths = Lists.newArrayList();Configuration conf = new Configuration(baseConf);FileSystem fs = FileSystem.get(wordCountPath.toUri(), conf);long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L;//默认64Mint chunkIndex = 0;Path chunkPath = new Path(dictionaryPathBase, DICTIONARY_FILE + chunkIndex);chunkPaths.add(chunkPath);SequenceFile.Writer dictWriter = new SequenceFile.Writer(fs, conf, chunkPath, Text.class, IntWritable.class);try {long currentChunkSize = 0;Path filesPattern = new Path(wordCountPath, OUTPUT_FILES_PATTERN);int i = 0;for (Pair<Writable,Writable> record: new SequenceFileDirIterable<Writable,Writable>(filesPattern, PathType.GLOB, null, null, true, conf)) {if (currentChunkSize > chunkSizeLimit) {//生成新的词典文件Closeables.close(dictWriter, false);chunkIndex++;chunkPath = new Path(dictionaryPathBase, DICTIONARY_FILE + chunkIndex);chunkPaths.add(chunkPath);dictWriter = new SequenceFile.Writer(fs, conf, chunkPath, Text.class, IntWritable.class);currentChunkSize = 0;}Writable key = record.getFirst();int fieldSize = DICTIONARY_BYTE_OVERHEAD + key.toString().length() * 2 + Integer.SIZE / 8;currentChunkSize += fieldSize;dictWriter.append(key, new IntWritable(i++));//指定id}maxTermDimension[0] = i;//记录最大word数目} finally {Closeables.close(dictWriter, false);}return chunkPaths;}
复制代码

2.3)构造PartialVectors(TF)

复制代码
int partialVectorIndex = 0;Collection<Path> partialVectorPaths = Lists.newArrayList();for (Path dictionaryChunk : dictionaryChunks) {Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++);partialVectorPaths.add(partialVectorOutputPath);makePartialVectors(input, baseConf, maxNGramSize, dictionaryChunk, partialVectorOutputPath,maxTermDimension[0], sequentialAccess, namedVectors, numReducers);}
复制代码

将input documents使用a chunk of features创建a partial vector

(这是由于词典文件被分成了多个文件,每个文件只能构造总的vector的一部分,其中每一部分叫一个partial vector)

输入:tokenizedPath   输出:partialVectorPaths

Mapper:(Mapper)

TFPartialVectorReducer

复制代码
    //读取词典文件
//MAHOUT-1247Path dictionaryFile = HadoopUtil.getSingleCachedFile(conf);// key is word value is idfor (Pair<Writable, IntWritable> record: new SequenceFileIterable<Writable, IntWritable>(dictionaryFile, true, conf)) {dictionary.put(record.getFirst().toString(), record.getSecond().get());}
复制代码
复制代码
//转化a document为a sparse vectorStringTuple value = it.next();Vector vector = new RandomAccessSparseVector(dimension, value.length()); // guess at initial sizefor (String term : value.getEntries()) {if (!term.isEmpty() && dictionary.containsKey(term)) { // unigramint termId = dictionary.get(term);vector.setQuick(termId, vector.getQuick(termId) + 1);}}
复制代码

2.4)合并PartialVectors(TF)

    Configuration conf = new Configuration(baseConf);Path outputDir = new Path(output, tfVectorsFolderName);PartialVectorMerger.mergePartialVectors(partialVectorPaths, outputDir, conf, normPower, logNormalize,maxTermDimension[0], sequentialAccess, namedVectors, numReducers);

合并所有的partial {@link org.apache.mahout.math.RandomAccessSparseVector}s为完整的{@link org.apache.mahout.math.RandomAccessSparseVector}

输入:partialVectorPaths   输出:tfVectorsFolder

Mapper:(Mapper)

PartialVectorMergeReducer:

//合并partial向量为完整的TF向量Vector vector = new RandomAccessSparseVector(dimension, 10);for (VectorWritable value : values) {vector.assign(value.get(), Functions.PLUS);//将包含不同word的向量合并为一个}

 3、创建IDF向量(document frequency Vectors)---多个Map/Reduce Job

复制代码
      Pair<Long[], List<Path>> docFrequenciesFeatures = null;// Should document frequency features be processedif (shouldPrune || processIdf) {log.info("Calculating IDF");docFrequenciesFeatures =TFIDFConverter.calculateDF(new Path(outputDir, tfDirName), outputDir, conf, chunkSize);}
复制代码

3.1)统计DF词频

Path wordCountPath = new Path(output, WORDCOUNT_OUTPUT_FOLDER);

startDFCounting(input, wordCountPath, baseConf);

输入:tfDir  输出:featureCountPath

 TermDocumentCountMapper

复制代码
 //为一个文档中的每个word计数1、文档数1Vector vector = value.get();for (Vector.Element e : vector.nonZeroes()) {out.set(e.index());context.write(out, ONE);}context.write(TOTAL_COUNT, ONE);
复制代码

Combiner:(TermDocumentCountReducer)

TermDocumentCountReducer

   //将每个word的文档频率和文档总数sumlong sum = 0;for (LongWritable value : values) {sum += value.get();}

3.2)df词频分块

 return createDictionaryChunks(wordCountPath, output, baseConf, chunkSizeInMegabytes);

将df词频分块存放到多个文件,记录word总数、文档总数

输入:featureCountPath    输出:dictionaryPathBase

复制代码
  /*** Read the document frequency List which is built at the end of the DF Count Job. This will use constant* memory and will run at the speed of your disk read*/private static Pair<Long[], List<Path>> createDictionaryChunks(Path featureCountPath,Path dictionaryPathBase,Configuration baseConf,int chunkSizeInMegabytes) throws IOException {List<Path> chunkPaths = Lists.newArrayList();Configuration conf = new Configuration(baseConf);FileSystem fs = FileSystem.get(featureCountPath.toUri(), conf);long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L;int chunkIndex = 0;Path chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);chunkPaths.add(chunkPath);SequenceFile.Writer freqWriter =new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class);try {long currentChunkSize = 0;long featureCount = 0;long vectorCount = Long.MAX_VALUE;Path filesPattern = new Path(featureCountPath, OUTPUT_FILES_PATTERN);for (Pair<IntWritable,LongWritable> record: new SequenceFileDirIterable<IntWritable,LongWritable>(filesPattern,PathType.GLOB,null,null,true,conf)) {if (currentChunkSize > chunkSizeLimit) {Closeables.close(freqWriter, false);chunkIndex++;chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);chunkPaths.add(chunkPath);freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class);currentChunkSize = 0;}int fieldSize = SEQUENCEFILE_BYTE_OVERHEAD + Integer.SIZE / 8 + Long.SIZE / 8;currentChunkSize += fieldSize;IntWritable key = record.getFirst();LongWritable value = record.getSecond();if (key.get() >= 0) {freqWriter.append(key, value);} else if (key.get() == -1) {//文档数目vectorCount = value.get();}featureCount = Math.max(key.get(), featureCount);}featureCount++;Long[] counts = {featureCount, vectorCount};//word数目、文档数目return new Pair<Long[], List<Path>>(counts, chunkPaths);} finally {Closeables.close(freqWriter, false);}}
复制代码

4、创建TFIDF(Term Frequency-Inverse Document Frequency (Tf-Idf) Vectors)

        TFIDFConverter.processTfIdf(new Path(outputDir, DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER),outputDir, conf, docFrequenciesFeatures, minDf, maxDF, norm, logNormalize,sequentialAccessOutput, namedVectors, reduceTasks);

4.1)生成PartialVectors(TFIDF)

复制代码
  int partialVectorIndex = 0;List<Path> partialVectorPaths = Lists.newArrayList();List<Path> dictionaryChunks = datasetFeatures.getSecond();for (Path dictionaryChunk : dictionaryChunks) {Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++);partialVectorPaths.add(partialVectorOutputPath);makePartialVectors(input,baseConf,datasetFeatures.getFirst()[0],datasetFeatures.getFirst()[1],minDf,maxDF,dictionaryChunk,partialVectorOutputPath,sequentialAccessOutput,namedVector);}
复制代码

使用a chunk of features创建a partial tfidf vector

输入:tfVectorsFolder   输出:partialVectorOutputPath

    DistributedCache.setCacheFiles(new URI[] {dictionaryFilePath.toUri()}, conf);//缓存df分块文件

Mapper:(Mapper)

TFIDFPartialVectorReducer

复制代码
  //计算每个文档中每个word的TFIDF值
Vector value = it.next().get();Vector vector = new RandomAccessSparseVector((int) featureCount, value.getNumNondefaultElements());for (Vector.Element e : value.nonZeroes()) {if (!dictionary.containsKey(e.index())) {continue;}long df = dictionary.get(e.index());if (maxDf > -1 && (100.0 * df) / vectorCount > maxDf) {continue;}if (df < minDf) {df = minDf;}vector.setQuick(e.index(), tfidf.calculate((int) e.get(), (int) df, (int) featureCount, (int) vectorCount));}
复制代码

 4.2)合并partial向量(TFIDF)

复制代码
    Configuration conf = new Configuration(baseConf);Path outputDir = new Path(output, DOCUMENT_VECTOR_OUTPUT_FOLDER);PartialVectorMerger.mergePartialVectors(partialVectorPaths,outputDir,baseConf,normPower,logNormalize,datasetFeatures.getFirst()[0].intValue(),sequentialAccessOutput,namedVector,numReducers);
复制代码

合并所有的partial向量为一个完整的文档向量

 输入:partialVectorOutputPath   输出:outputDir

 Mapper:Mapper

 PartialVectorMergeReducer

    //汇总TFIDF向量Vector vector = new RandomAccessSparseVector(dimension, 10);for (VectorWritable value : values) {vector.assign(value.get(), Functions.PLUS);}

 

这篇关于Mahout源码分析之 -- 文档向量化TF-IDF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055225

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当