Mahout源码分析之 -- 文档向量化TF-IDF

2024-06-12 20:18

本文主要是介绍Mahout源码分析之 -- 文档向量化TF-IDF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Mahout之SparseVectorsFromSequenceFiles源码分析

一、原理

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)。

词频 (TF) 指的是某一个给定的词语在文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)

逆向文件频率(IDF)是一个词语普遍重要性的度量,其主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。

对于在某一特定文件里的词语  来说,它的重要性可表示为:


以上式子中  是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和(分母也可以是词出现次数的最大值)。

逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到:


其中

  • |D|:语料库中的文件总数
  • :包含词语的文件数目(即的文件数目)如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用

然后


某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

二、源码分析

目标:将一个给定的sequence文件集合转化为SparseVectors

1、对文档分词

1.1)使用最新的{@link org.apache.lucene.util.Version}创建一个Analyzer,用来下文1.2分词;

复制代码
      Class<? extends Analyzer> analyzerClass = StandardAnalyzer.class;if (cmdLine.hasOption(analyzerNameOpt)) {String className = cmdLine.getValue(analyzerNameOpt).toString();analyzerClass = Class.forName(className).asSubclass(Analyzer.class);// try instantiating it, b/c there isn't any point in setting it if// you can't instantiate it
        AnalyzerUtils.createAnalyzer(analyzerClass);}
复制代码

1.2)使用{@link StringTuple}将input documents转化为token数组(input documents必须是{@link org.apache.hadoop.io.SequenceFile}格式);

DocumentProcessor.tokenizeDocuments(inputDir, analyzerClass, tokenizedPath, conf);

输入:inputDir     输出:tokenizedPath

SequenceFileTokenizerMapper

复制代码
 //将input documents按Analyzer进行分词,并将分得的词放在一个StringTuple中TokenStream stream = analyzer.tokenStream(key.toString(), new StringReader(value.toString()));CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class);stream.reset();StringTuple document = new StringTuple();//StringTuple是一个能够被用于Hadoop Map/Reduce Job的String类型有序Listwhile (stream.incrementToken()) {if (termAtt.length() > 0) {document.add(new String(termAtt.buffer(), 0, termAtt.length()));}}
复制代码

2、创建TF向量(Term Frequency Vectors)---多个Map/Reduce Job

复制代码
        DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath,outputDir,tfDirName,conf,minSupport,maxNGramSize,minLLRValue,-1.0f,false,reduceTasks,chunkSize,sequentialAccessOutput,namedVectors);
复制代码

2.1)全局词统计(TF)

startWordCounting(input, dictionaryJobPath, baseConf, minSupport);

使用Map/Reduce并行地统计全局的词频,这里只考虑(maxNGramSize == 1) 

输入:tokenizedPath   输出:wordCountPath

TermCountMapper

复制代码
  //统计一个文本文档中的词频OpenObjectLongHashMap<String> wordCount = new OpenObjectLongHashMap<String>();for (String word : value.getEntries()) {if (wordCount.containsKey(word)) {wordCount.put(word, wordCount.get(word) + 1);} else {wordCount.put(word, 1);}}wordCount.forEachPair(new ObjectLongProcedure<String>() {@Overridepublic boolean apply(String first, long second) {try {context.write(new Text(first), new LongWritable(second));} catch (IOException e) {context.getCounter("Exception", "Output IO Exception").increment(1);} catch (InterruptedException e) {context.getCounter("Exception", "Interrupted Exception").increment(1);}return true;}});
复制代码

TermCountCombiner:( 同 TermCountReducer)

TermCountReducer

复制代码
//汇总所有的words和单词的weights,并将同一word的权重sumlong sum = 0;for (LongWritable value : values) {sum += value.get();}if (sum >= minSupport) {//TermCountCombiner没有这个过滤)context.write(key, new LongWritable(sum));}
复制代码

2.2)创建词典

 List<Path> dictionaryChunks;dictionaryChunks =createDictionaryChunks(dictionaryJobPath, output, baseConf, chunkSizeInMegabytes, maxTermDimension);

读取2.1词频Job的feature frequency List,并给它们指定id

输入:wordCountPath   输出:dictionaryJobPath

复制代码
 /*** Read the feature frequency List which is built at the end of the Word Count Job and assign ids to them.* This will use constant memory and will run at the speed of your disk read*/private static List<Path> createDictionaryChunks(Path wordCountPath,Path dictionaryPathBase,Configuration baseConf,int chunkSizeInMegabytes,int[] maxTermDimension) throws IOException {List<Path> chunkPaths = Lists.newArrayList();Configuration conf = new Configuration(baseConf);FileSystem fs = FileSystem.get(wordCountPath.toUri(), conf);long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L;//默认64Mint chunkIndex = 0;Path chunkPath = new Path(dictionaryPathBase, DICTIONARY_FILE + chunkIndex);chunkPaths.add(chunkPath);SequenceFile.Writer dictWriter = new SequenceFile.Writer(fs, conf, chunkPath, Text.class, IntWritable.class);try {long currentChunkSize = 0;Path filesPattern = new Path(wordCountPath, OUTPUT_FILES_PATTERN);int i = 0;for (Pair<Writable,Writable> record: new SequenceFileDirIterable<Writable,Writable>(filesPattern, PathType.GLOB, null, null, true, conf)) {if (currentChunkSize > chunkSizeLimit) {//生成新的词典文件Closeables.close(dictWriter, false);chunkIndex++;chunkPath = new Path(dictionaryPathBase, DICTIONARY_FILE + chunkIndex);chunkPaths.add(chunkPath);dictWriter = new SequenceFile.Writer(fs, conf, chunkPath, Text.class, IntWritable.class);currentChunkSize = 0;}Writable key = record.getFirst();int fieldSize = DICTIONARY_BYTE_OVERHEAD + key.toString().length() * 2 + Integer.SIZE / 8;currentChunkSize += fieldSize;dictWriter.append(key, new IntWritable(i++));//指定id}maxTermDimension[0] = i;//记录最大word数目} finally {Closeables.close(dictWriter, false);}return chunkPaths;}
复制代码

2.3)构造PartialVectors(TF)

复制代码
int partialVectorIndex = 0;Collection<Path> partialVectorPaths = Lists.newArrayList();for (Path dictionaryChunk : dictionaryChunks) {Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++);partialVectorPaths.add(partialVectorOutputPath);makePartialVectors(input, baseConf, maxNGramSize, dictionaryChunk, partialVectorOutputPath,maxTermDimension[0], sequentialAccess, namedVectors, numReducers);}
复制代码

将input documents使用a chunk of features创建a partial vector

(这是由于词典文件被分成了多个文件,每个文件只能构造总的vector的一部分,其中每一部分叫一个partial vector)

输入:tokenizedPath   输出:partialVectorPaths

Mapper:(Mapper)

TFPartialVectorReducer

复制代码
    //读取词典文件
//MAHOUT-1247Path dictionaryFile = HadoopUtil.getSingleCachedFile(conf);// key is word value is idfor (Pair<Writable, IntWritable> record: new SequenceFileIterable<Writable, IntWritable>(dictionaryFile, true, conf)) {dictionary.put(record.getFirst().toString(), record.getSecond().get());}
复制代码
复制代码
//转化a document为a sparse vectorStringTuple value = it.next();Vector vector = new RandomAccessSparseVector(dimension, value.length()); // guess at initial sizefor (String term : value.getEntries()) {if (!term.isEmpty() && dictionary.containsKey(term)) { // unigramint termId = dictionary.get(term);vector.setQuick(termId, vector.getQuick(termId) + 1);}}
复制代码

2.4)合并PartialVectors(TF)

    Configuration conf = new Configuration(baseConf);Path outputDir = new Path(output, tfVectorsFolderName);PartialVectorMerger.mergePartialVectors(partialVectorPaths, outputDir, conf, normPower, logNormalize,maxTermDimension[0], sequentialAccess, namedVectors, numReducers);

合并所有的partial {@link org.apache.mahout.math.RandomAccessSparseVector}s为完整的{@link org.apache.mahout.math.RandomAccessSparseVector}

输入:partialVectorPaths   输出:tfVectorsFolder

Mapper:(Mapper)

PartialVectorMergeReducer:

//合并partial向量为完整的TF向量Vector vector = new RandomAccessSparseVector(dimension, 10);for (VectorWritable value : values) {vector.assign(value.get(), Functions.PLUS);//将包含不同word的向量合并为一个}

 3、创建IDF向量(document frequency Vectors)---多个Map/Reduce Job

复制代码
      Pair<Long[], List<Path>> docFrequenciesFeatures = null;// Should document frequency features be processedif (shouldPrune || processIdf) {log.info("Calculating IDF");docFrequenciesFeatures =TFIDFConverter.calculateDF(new Path(outputDir, tfDirName), outputDir, conf, chunkSize);}
复制代码

3.1)统计DF词频

Path wordCountPath = new Path(output, WORDCOUNT_OUTPUT_FOLDER);

startDFCounting(input, wordCountPath, baseConf);

输入:tfDir  输出:featureCountPath

 TermDocumentCountMapper

复制代码
 //为一个文档中的每个word计数1、文档数1Vector vector = value.get();for (Vector.Element e : vector.nonZeroes()) {out.set(e.index());context.write(out, ONE);}context.write(TOTAL_COUNT, ONE);
复制代码

Combiner:(TermDocumentCountReducer)

TermDocumentCountReducer

   //将每个word的文档频率和文档总数sumlong sum = 0;for (LongWritable value : values) {sum += value.get();}

3.2)df词频分块

 return createDictionaryChunks(wordCountPath, output, baseConf, chunkSizeInMegabytes);

将df词频分块存放到多个文件,记录word总数、文档总数

输入:featureCountPath    输出:dictionaryPathBase

复制代码
  /*** Read the document frequency List which is built at the end of the DF Count Job. This will use constant* memory and will run at the speed of your disk read*/private static Pair<Long[], List<Path>> createDictionaryChunks(Path featureCountPath,Path dictionaryPathBase,Configuration baseConf,int chunkSizeInMegabytes) throws IOException {List<Path> chunkPaths = Lists.newArrayList();Configuration conf = new Configuration(baseConf);FileSystem fs = FileSystem.get(featureCountPath.toUri(), conf);long chunkSizeLimit = chunkSizeInMegabytes * 1024L * 1024L;int chunkIndex = 0;Path chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);chunkPaths.add(chunkPath);SequenceFile.Writer freqWriter =new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class);try {long currentChunkSize = 0;long featureCount = 0;long vectorCount = Long.MAX_VALUE;Path filesPattern = new Path(featureCountPath, OUTPUT_FILES_PATTERN);for (Pair<IntWritable,LongWritable> record: new SequenceFileDirIterable<IntWritable,LongWritable>(filesPattern,PathType.GLOB,null,null,true,conf)) {if (currentChunkSize > chunkSizeLimit) {Closeables.close(freqWriter, false);chunkIndex++;chunkPath = new Path(dictionaryPathBase, FREQUENCY_FILE + chunkIndex);chunkPaths.add(chunkPath);freqWriter = new SequenceFile.Writer(fs, conf, chunkPath, IntWritable.class, LongWritable.class);currentChunkSize = 0;}int fieldSize = SEQUENCEFILE_BYTE_OVERHEAD + Integer.SIZE / 8 + Long.SIZE / 8;currentChunkSize += fieldSize;IntWritable key = record.getFirst();LongWritable value = record.getSecond();if (key.get() >= 0) {freqWriter.append(key, value);} else if (key.get() == -1) {//文档数目vectorCount = value.get();}featureCount = Math.max(key.get(), featureCount);}featureCount++;Long[] counts = {featureCount, vectorCount};//word数目、文档数目return new Pair<Long[], List<Path>>(counts, chunkPaths);} finally {Closeables.close(freqWriter, false);}}
复制代码

4、创建TFIDF(Term Frequency-Inverse Document Frequency (Tf-Idf) Vectors)

        TFIDFConverter.processTfIdf(new Path(outputDir, DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER),outputDir, conf, docFrequenciesFeatures, minDf, maxDF, norm, logNormalize,sequentialAccessOutput, namedVectors, reduceTasks);

4.1)生成PartialVectors(TFIDF)

复制代码
  int partialVectorIndex = 0;List<Path> partialVectorPaths = Lists.newArrayList();List<Path> dictionaryChunks = datasetFeatures.getSecond();for (Path dictionaryChunk : dictionaryChunks) {Path partialVectorOutputPath = new Path(output, VECTOR_OUTPUT_FOLDER + partialVectorIndex++);partialVectorPaths.add(partialVectorOutputPath);makePartialVectors(input,baseConf,datasetFeatures.getFirst()[0],datasetFeatures.getFirst()[1],minDf,maxDF,dictionaryChunk,partialVectorOutputPath,sequentialAccessOutput,namedVector);}
复制代码

使用a chunk of features创建a partial tfidf vector

输入:tfVectorsFolder   输出:partialVectorOutputPath

    DistributedCache.setCacheFiles(new URI[] {dictionaryFilePath.toUri()}, conf);//缓存df分块文件

Mapper:(Mapper)

TFIDFPartialVectorReducer

复制代码
  //计算每个文档中每个word的TFIDF值
Vector value = it.next().get();Vector vector = new RandomAccessSparseVector((int) featureCount, value.getNumNondefaultElements());for (Vector.Element e : value.nonZeroes()) {if (!dictionary.containsKey(e.index())) {continue;}long df = dictionary.get(e.index());if (maxDf > -1 && (100.0 * df) / vectorCount > maxDf) {continue;}if (df < minDf) {df = minDf;}vector.setQuick(e.index(), tfidf.calculate((int) e.get(), (int) df, (int) featureCount, (int) vectorCount));}
复制代码

 4.2)合并partial向量(TFIDF)

复制代码
    Configuration conf = new Configuration(baseConf);Path outputDir = new Path(output, DOCUMENT_VECTOR_OUTPUT_FOLDER);PartialVectorMerger.mergePartialVectors(partialVectorPaths,outputDir,baseConf,normPower,logNormalize,datasetFeatures.getFirst()[0].intValue(),sequentialAccessOutput,namedVector,numReducers);
复制代码

合并所有的partial向量为一个完整的文档向量

 输入:partialVectorOutputPath   输出:outputDir

 Mapper:Mapper

 PartialVectorMergeReducer

    //汇总TFIDF向量Vector vector = new RandomAccessSparseVector(dimension, 10);for (VectorWritable value : values) {vector.assign(value.get(), Functions.PLUS);}

 

这篇关于Mahout源码分析之 -- 文档向量化TF-IDF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055225

相关文章

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Python批量调整Word文档中的字体、段落间距及格式

《Python批量调整Word文档中的字体、段落间距及格式》这篇文章主要为大家详细介绍了如何使用Python的docx库来批量处理Word文档,包括设置首行缩进、字体、字号、行间距、段落对齐方式等,需... 目录关键代码一级标题设置  正文设置完整代码运行结果最近关于批处理格式的问题我查了很多资料,但是都没

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API