实时流Streaming大数据:Storm,Spark和Samza

2024-06-12 19:38

本文主要是介绍实时流Streaming大数据:Storm,Spark和Samza,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 当前有许多分布式计算系统能够实时处理大数据,这篇文章是对Apache的三个框架进行比较,试图提供一个快速的高屋建瓴地异同性总结。

Apache Storm

  在Storm中,你设计的实时计算图称为toplogy,将其以集群方式运行,其主节点会在工作节点之间分发代码并执行,在一个topology中,数据是在spout之间传递,它发射数据流作为不可变的key-value匹配集合,这种key-value配对值称为tuple,bolt是用来转换这些流如count计数或filter过滤等,bolt它们自己也可选择发射数据到其它流处理管道下游的bolt。

storm streaming

 

Apache Spark

  Spark Streaming是核心Spark的一个拓展,并不是像Storm一次处理流,而是将它们分成片段,变成小批量时间间隔处理,Spark抽象一个持续的数据流称为DStream(离散流),一个DStream是RDD(弹性分布式数据集的简称)的微批次 micro-batch,RDD是分布式集合能够并行地被任何函数操作,也可以通过一个滑动窗口的数据(窗口计算)进行变换。

spark streaming

 

Apache Samza

  Samza 的目标是将流作为接受到的消息处理,同时,Samza的流初始元素并不是一个tuple或一个DStream,而是一个消息,流被划分到分区,每个分区是一个只读消息的排序的序列,每个消息有一个唯一的ID(offset),系统也支持批处理,从同样的流分区以顺序消费几个消息,尽管Samza主要是依赖于Hadoop的Yarn和Apache Kafka,但是它的Execution & Streaming模块是可插拔的。

samza streaming

 

共同点

  这三个实时计算系统都是开源的,低延迟的,分布式的,可扩展的和容错的,他们都允许你在有错误恢复的集群中通过并行任务执行流处理代码,他们也提供简单的API抽象底层和复杂的实现。

这三个框架使用不同的词汇表达相似的概念:

 

不同点

不同点总结如下表:

有三个delivery模式:

  • At-most-once: 消息也许丢失,这通常是最不理想的结果。
  • At-least-once: 消息可以被退回(没有损失,但是会重复),这足够支持很多用例场景了。
  • Exactly-once: 每个消息只传递一次,也只有一次(不会丢失,无重复),这是一个理想功能,在所有情况下很难达到。

另外一个方面是状态管理,有许多不同的策略来存储状态,Spark Streaming写数据到分布式文件系统如HDFS,而Samza使用一个嵌入的key-value存储,Storm则或在应用层使用自己的状态管理,或使用一个高层次抽象称为:Trident.

 

使用场景

  所有这三个框架都特别适合处理连续的大量的实时数据,那么选择哪一个呢?并没有硬性规则,基本是通用的指南。

  如果你想要一个高速事件流处理系统,能够进行增量计算,那么Storm将非常适合,如果你还需要按需运行分布式计算,而客户端正在同步等待结果,那么你得在其外面使用分布式RPC(DRPC),最后但并非最不重要的是:因为Storm使用Apache Thrift,你能以任何语言编写拓扑topology,如果你需要状态持久或exactly-once传递,那么你应当看看高级别的Trident API,它也提供微批处理(micro-batching)

  使用Storm的公司有 Twitter, Yahoo!, Spotify, The Weather Channel...

  谈到微批处理,如果你必须有有态计算,exactly-once传递和不介意高延迟,你可以考虑Spark Streaming,特别如果计划实现图操作,机器学习或访问SQL,Apache Spark能让你通过结合Spark SQL, MLlib, GraphX几个库包实现,这些提供方便的统一的编程模型,特别是流算法如流k-means允许Spark实时进行决策。

  使用Spark有:Amazon, Yahoo!, NASA JPL, eBay Inc., Baidu

  如果你有大量的状态,比如每个分区有很多G字节,Samza协同存储和在同一机器处理的模型能让你有效处理状态,且不会塞满内存。这个框架提供灵活的可插拔API:它的默认execution 消息和存储引擎能够被你喜欢的选择替代,更有甚者,如果你有很多流处理过程,它们分别来自于不同的代码库不同的团队,Samza细粒度的工作特点将特别适合,因为它们能最小的影响来进行加入和移除。

这篇关于实时流Streaming大数据:Storm,Spark和Samza的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055145

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp