实时流Streaming大数据:Storm,Spark和Samza

2024-06-12 19:38

本文主要是介绍实时流Streaming大数据:Storm,Spark和Samza,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 当前有许多分布式计算系统能够实时处理大数据,这篇文章是对Apache的三个框架进行比较,试图提供一个快速的高屋建瓴地异同性总结。

Apache Storm

  在Storm中,你设计的实时计算图称为toplogy,将其以集群方式运行,其主节点会在工作节点之间分发代码并执行,在一个topology中,数据是在spout之间传递,它发射数据流作为不可变的key-value匹配集合,这种key-value配对值称为tuple,bolt是用来转换这些流如count计数或filter过滤等,bolt它们自己也可选择发射数据到其它流处理管道下游的bolt。

storm streaming

 

Apache Spark

  Spark Streaming是核心Spark的一个拓展,并不是像Storm一次处理流,而是将它们分成片段,变成小批量时间间隔处理,Spark抽象一个持续的数据流称为DStream(离散流),一个DStream是RDD(弹性分布式数据集的简称)的微批次 micro-batch,RDD是分布式集合能够并行地被任何函数操作,也可以通过一个滑动窗口的数据(窗口计算)进行变换。

spark streaming

 

Apache Samza

  Samza 的目标是将流作为接受到的消息处理,同时,Samza的流初始元素并不是一个tuple或一个DStream,而是一个消息,流被划分到分区,每个分区是一个只读消息的排序的序列,每个消息有一个唯一的ID(offset),系统也支持批处理,从同样的流分区以顺序消费几个消息,尽管Samza主要是依赖于Hadoop的Yarn和Apache Kafka,但是它的Execution & Streaming模块是可插拔的。

samza streaming

 

共同点

  这三个实时计算系统都是开源的,低延迟的,分布式的,可扩展的和容错的,他们都允许你在有错误恢复的集群中通过并行任务执行流处理代码,他们也提供简单的API抽象底层和复杂的实现。

这三个框架使用不同的词汇表达相似的概念:

 

不同点

不同点总结如下表:

有三个delivery模式:

  • At-most-once: 消息也许丢失,这通常是最不理想的结果。
  • At-least-once: 消息可以被退回(没有损失,但是会重复),这足够支持很多用例场景了。
  • Exactly-once: 每个消息只传递一次,也只有一次(不会丢失,无重复),这是一个理想功能,在所有情况下很难达到。

另外一个方面是状态管理,有许多不同的策略来存储状态,Spark Streaming写数据到分布式文件系统如HDFS,而Samza使用一个嵌入的key-value存储,Storm则或在应用层使用自己的状态管理,或使用一个高层次抽象称为:Trident.

 

使用场景

  所有这三个框架都特别适合处理连续的大量的实时数据,那么选择哪一个呢?并没有硬性规则,基本是通用的指南。

  如果你想要一个高速事件流处理系统,能够进行增量计算,那么Storm将非常适合,如果你还需要按需运行分布式计算,而客户端正在同步等待结果,那么你得在其外面使用分布式RPC(DRPC),最后但并非最不重要的是:因为Storm使用Apache Thrift,你能以任何语言编写拓扑topology,如果你需要状态持久或exactly-once传递,那么你应当看看高级别的Trident API,它也提供微批处理(micro-batching)

  使用Storm的公司有 Twitter, Yahoo!, Spotify, The Weather Channel...

  谈到微批处理,如果你必须有有态计算,exactly-once传递和不介意高延迟,你可以考虑Spark Streaming,特别如果计划实现图操作,机器学习或访问SQL,Apache Spark能让你通过结合Spark SQL, MLlib, GraphX几个库包实现,这些提供方便的统一的编程模型,特别是流算法如流k-means允许Spark实时进行决策。

  使用Spark有:Amazon, Yahoo!, NASA JPL, eBay Inc., Baidu

  如果你有大量的状态,比如每个分区有很多G字节,Samza协同存储和在同一机器处理的模型能让你有效处理状态,且不会塞满内存。这个框架提供灵活的可插拔API:它的默认execution 消息和存储引擎能够被你喜欢的选择替代,更有甚者,如果你有很多流处理过程,它们分别来自于不同的代码库不同的团队,Samza细粒度的工作特点将特别适合,因为它们能最小的影响来进行加入和移除。

这篇关于实时流Streaming大数据:Storm,Spark和Samza的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055145

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.