【机器学习算法】期望最大化(EM)算法概述

2024-06-12 12:04

本文主要是介绍【机器学习算法】期望最大化(EM)算法概述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

期望最大化(EM)算法是一种迭代算法,用于在有未观测变量的情况下,求解概率模型参数的最大似然估计或最大后验估计。以下是对EM算法的原理与应用进行详细地剖析:

  • EM算法原理
    1. E步 - 期望计算:根据当前估计的模型参数,计算隐变量的期望值[1]。这个步骤利用了已知的观测数据和当前的参数估计,来更新隐变量的概率分布。
    2. M步 - 最大化:基于E步计算得到的隐变量期望,更新模型参数以最大化似然函数[1]。这一步找到了使似然函数最大的参数值,为下一次E步的迭代做准备。
  • EM算法的关键优势
    1. 处理隐变量的能力:EM算法能够处理包含隐变量的复杂模型,这是许多其他算法难以直接解决的问题。
    2. 广泛的应用范围:从混合模型、隐马尔可夫模型到主题模型等,EM算法都能发挥其强大的作用[2][3]。
  • EM算法的应用实例
    1. 高斯混合模型(GMM):EM算法常用于训练GMM,通过假设数据由多个高斯分布混合而成,EM算法可以有效地估计出每个分布的参数[3]。
    2. 隐马尔可夫模型(HMM):在HMM中,状态转换和观测输出的关系包含了隐变量,EM算法可以用来学习模型的状态转移概率和发射概率[2]。
    3. 主题模型:如LDA(Latent Dirichlet Allocation)模型,EM算法应用于发现文档集合中的潜在主题,以及文档如何在这些主题上分布。

EM算法以其独特的处理隐变量能力和广泛的适用范围,成为解决具有挑战性的机器学习问题的重要工具。通过迭代地执行E步和M步,EM算法能够在不完整的数据集上找到模型参数的有效估计,从而在各种实际应用中发挥关键作用。

  • 代码应用案例
    以下是一个简单的EM算法在数据挖掘中的应用代码案例,用于解决高斯混合模型(GMM)的参数估计问题:
import numpy as np
from sklearn.mixture import GaussianMixture# 生成模拟数据
np.random.seed(0)
data = np.concatenate((np.random.normal(loc=-2, scale=1, size=(50, 2)),np.random.normal(loc=2, scale=1, size=(50, 2))))# 创建GMM模型并训练
gmm = GaussianMixture(n_components=2, covariance_type='full')
gmm.fit(data)# 输出模型参数
print('Means:', gmm.means_)
print('Covariances:', gmm.covariances_)
print('Weights:', gmm.weights_)

在这个例子中,我们使用sklearn库中的GaussianMixture类来创建一个GMM模型。首先,我们生成了一组模拟数据,其中包含两个不同的高斯分布。然后,我们使用fit方法对模型进行训练,并设置n_components参数为2,表示我们希望模型能够将数据分为两个高斯分布。最后,我们输出了模型的均值、协方差和权重等参数。

请注意,这只是一个简单的示例,实际应用中可能需要根据具体问题进行参数调整和模型优化。

这篇关于【机器学习算法】期望最大化(EM)算法概述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054159

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig