[大模型]Llama-3-8B-Instruct FastApi 部署调用

2024-06-12 06:44

本文主要是介绍[大模型]Llama-3-8B-Instruct FastApi 部署调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境准备

在 Autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

在这里插入图片描述

pip 换源加速下载并安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install fastapi==0.110.2
pip install uvicorn==0.29.0
pip install requests==2.31.0
pip install modelscope==1.11.0
pip install transformers==4.40.0
pip install accelerate==0.29.3

fastapi0.110.2
langchain
0.1.16
modelscope1.11.0
streamlit
1.33.0
torch2.1.2+cu121
transformers
4.40.0
uvicorn==0.29.0

考虑到部分同学配置环境可能会遇到一些问题,我们在 AutoDL 平台准备了 LLaMA3 的环境镜像,该镜像适用于该仓库的所有部署环境。点击下方链接并直接创建 Autodl 示例即可。
https://www.codewithgpu.com/i/datawhalechina/self-llm/self-llm-LLaMA3

模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。

在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py 执行下载,模型大小为 15GB,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('LLM-Research/Meta-Llama-3-8B-Instruct', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在 /root/autodl-tmp 路径下新建 api.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出 issue。

from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import uvicorn
import json
import datetime
import torch# 设置设备参数
DEVICE = "cuda"  # 使用CUDA
DEVICE_ID = "0"  # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE  # 组合CUDA设备信息# 清理GPU内存函数
def torch_gc():if torch.cuda.is_available():  # 检查是否可用CUDAwith torch.cuda.device(CUDA_DEVICE):  # 指定CUDA设备torch.cuda.empty_cache()  # 清空CUDA缓存torch.cuda.ipc_collect()  # 收集CUDA内存碎片# 构建 chat 模版
def bulid_input(prompt, history=[]):system_format='<|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>'user_format='<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|>'assistant_format='<|start_header_id|>assistant<|end_header_id|>\n\n{content}<|eot_id|>\n'history.append({'role':'user','content':prompt})prompt_str = ''# 拼接历史对话for item in history:if item['role']=='user':prompt_str+=user_format.format(content=item['content'])else:prompt_str+=assistant_format.format(content=item['content'])return prompt_str# 创建FastAPI应用
app = FastAPI()# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):global model, tokenizer  # 声明全局变量以便在函数内部使用模型和分词器json_post_raw = await request.json()  # 获取POST请求的JSON数据json_post = json.dumps(json_post_raw)  # 将JSON数据转换为字符串json_post_list = json.loads(json_post)  # 将字符串转换为Python对象prompt = json_post_list.get('prompt')  # 获取请求中的提示history = json_post_list.get('history', [])  # 获取请求中的历史记录messages = [# {"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": prompt}]# 调用模型进行对话生成input_str = bulid_input(prompt=prompt, history=history)input_ids = tokenizer.encode(input_str, add_special_tokens=False, return_tensors='pt').cuda()generated_ids = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True,top_p=0.9, temperature=0.5, repetition_penalty=1.1, eos_token_id=tokenizer.encode('<|eot_id|>')[0])outputs = generated_ids.tolist()[0][len(input_ids[0]):]response = tokenizer.decode(outputs)response = response.strip().replace('<|eot_id|>', "").replace('<|start_header_id|>assistant<|end_header_id|>\n\n', '').strip() # 解析 chat 模版now = datetime.datetime.now()  # 获取当前时间time = now.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间为字符串# 构建响应JSONanswer = {"response": response,"status": 200,"time": time}# 构建日志信息log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'print(log)  # 打印日志torch_gc()  # 执行GPU内存清理return answer  # 返回响应# 主函数入口
if __name__ == '__main__':# 加载预训练的分词器和模型model_name_or_path = '/root/autodl-tmp/LLM-Research/Meta-Llama-3-8B-Instruct'tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16).cuda()# 启动FastAPI应用# 用6006端口可以将autodl的端口映射到本地,从而在本地使用apiuvicorn.run(app, host='0.0.0.0', port=6006, workers=1)  # 在指定端口和主机上启动应用

Api 部署

在终端输入以下命令启动 api 服务:

cd /root/autodl-tmp
python api.py

加载完毕后出现如下信息说明成功。

在这里插入图片描述

默认部署在 6006 端口,通过 POST 方法进行调用,可以使用 curl 调用,如下所示:

curl -X POST "http://127.0.0.1:6006" \-H 'Content-Type: application/json' \-d '{"prompt": "你好"}'

得到的返回值如下所示:

{"response": "😊 你好!我也很高兴见到你!有什么问题或话题想聊天吗?","status": 200,"time": "2024-04-20 23:11:00"
}

也可以使用 python 中的 requests 库进行调用,如下所示:

import requests
import jsondef get_completion(prompt):headers = {'Content-Type': 'application/json'}data = {"prompt": prompt}response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))return response.json()['response']if __name__ == '__main__':print(get_completion('你好'))

在这里插入图片描述

这篇关于[大模型]Llama-3-8B-Instruct FastApi 部署调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053471

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Idea调用WebService的关键步骤和注意事项

《Idea调用WebService的关键步骤和注意事项》:本文主要介绍如何在Idea中调用WebService,包括理解WebService的基本概念、获取WSDL文件、阅读和理解WSDL文件、选... 目录前言一、理解WebService的基本概念二、获取WSDL文件三、阅读和理解WSDL文件四、选择对接

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python