weka实战005:基于HashSet实现的apriori关联规则算法

2024-06-11 09:58

本文主要是介绍weka实战005:基于HashSet实现的apriori关联规则算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个一个apriori算法的演示版本,所有的代码都在一个类。仅供研究算法参考


package test;import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Vector;//用set写的apriori算法
public class AprioriSetBasedDemo {class Transaction {/** 购物记录,用set保存多个货物名*/private HashSet<String> pnSet = new HashSet<String>();public Transaction() {pnSet.clear();}public Transaction(String[] names) {pnSet.clear();for (String s : names) {pnSet.add(s);}}public HashSet<String> getPnSet() {return pnSet;}public void addPname(String s) {pnSet.add(s);}public boolean containSubSet(HashSet<String> subSet) {return pnSet.containsAll(subSet);}@Overridepublic String toString() {StringBuilder sb = new StringBuilder();Iterator<String> iter = pnSet.iterator();while (iter.hasNext()) {sb.append(iter.next() + ",");}return "Transaction = [" + sb.toString() + "]";}}class TransactionDB {// 记录所有的Transactionprivate Vector<Transaction> vt = new Vector<Transaction>();public TransactionDB() {vt.clear();}public int getSize() {return vt.size();}public void addTransaction(Transaction t) {vt.addElement(t);}public Transaction getTransaction(int idx) {return vt.elementAt(idx);}}public class AssoRule implements Comparable<AssoRule> {private String ruleContent;private double confidence;public void setRuleContent(String ruleContent) {this.ruleContent = ruleContent;}public void setConfidence(double confidence) {this.confidence = confidence;}public AssoRule(String ruleContent, double confidence) {this.ruleContent = ruleContent;this.confidence = confidence;}@Overridepublic int compareTo(AssoRule o) {if (o.confidence > this.confidence) {return 1;} else if (o.confidence == this.confidence) {return 0;} else {return -1;}}@Overridepublic String toString() {return ruleContent + ", confidence=" + confidence * 100 + "%";}}public static String getStringFromSet(HashSet<String> set) {StringBuilder sb = new StringBuilder();Iterator<String> iter = set.iterator();while (iter.hasNext()) {sb.append(iter.next() + ", ");}if (sb.length() > 2) {sb.delete(sb.length() - 2, sb.length() - 1);}return sb.toString();}// 计算具有最小支持度的一项频繁集 >= minSupportpublic static HashMap<String, Integer> buildMinSupportFrequenceSet(TransactionDB tdb, int minSupport) {HashMap<String, Integer> minSupportMap = new HashMap<String, Integer>();for (int i = 0; i < tdb.getSize(); i++) {Transaction t = tdb.getTransaction(i);Iterator<String> it = t.getPnSet().iterator();while (it.hasNext()) {String key = it.next();if (minSupportMap.containsKey(key)) {minSupportMap.put(key, minSupportMap.get(key) + 1);} else {minSupportMap.put(key, new Integer(1));}}}Iterator<String> iter = minSupportMap.keySet().iterator();Vector<String> toBeRemoved = new Vector<String>();while (iter.hasNext()) {String key = iter.next();if (minSupportMap.get(key) < minSupport) {toBeRemoved.add(key);}}for (int i = 0; i < toBeRemoved.size(); i++) {minSupportMap.remove(toBeRemoved.get(i));}return minSupportMap;}public void buildRules(TransactionDB tdb,HashMap<HashSet<String>, Integer> kItemFS, Vector<AssoRule> var,double ruleMinSupportPer) {// 如果kItemFS的成员数量不超过1不需要计算if (kItemFS.size() <= 1) {return;}// k+1项频项集HashMap<HashSet<String>, Integer> kNextItemFS = new HashMap<HashSet<String>, Integer>();// 获得第k项频项集@SuppressWarnings("unchecked")HashSet<String>[] kItemSets = new HashSet[kItemFS.size()];kItemFS.keySet().toArray(kItemSets);/** 根据k项频项集,用两重循环获得k+1项频项集 然后计算有多少个tranction包含这个k+1项频项集* 然后支持比超过ruleMinSupportPer,就可以生成规则,放入规则向量* 然后,将k+1项频项集及其支持度放入kNextItemFS,进入下一轮计算*/for (int i = 0; i < kItemSets.length - 1; i++) {HashSet<String> set_i = kItemSets[i];for (int j = i + 1; j < kItemSets.length; j++) {HashSet<String> set_j = kItemSets[j];// k+1 item setHashSet<String> kNextSet = new HashSet<String>();kNextSet.addAll(set_i);kNextSet.addAll(set_j);if (kNextSet.size() <= set_i.size()|| kNextSet.size() <= set_j.size()) {continue;}// 计算k+1 item set在所有transaction出现了几次int count = 0;for (int k = 0; k < tdb.getSize(); k++) {if (tdb.getTransaction(k).containSubSet(kNextSet)) {count++;}}if (count <= 0) {continue;}Integer n_i = kItemFS.get(set_i);double per = 1.0 * count / n_i.intValue();if (per >= ruleMinSupportPer) {kNextItemFS.put(kNextSet, new Integer(count));HashSet<String> tmp = new HashSet<String>();tmp.addAll(kNextSet);tmp.removeAll(set_i);String s1 = "{" + getStringFromSet(set_i) + "}" + "(" + n_i+ ")" + "==>" + getStringFromSet(tmp).toString()+ "(" + count + ")";var.addElement(new AssoRule(s1, per));}}}// 进入下一轮计算buildRules(tdb, kNextItemFS, var, ruleMinSupportPer);}public void test() {// Transaction数据集TransactionDB tdb = new TransactionDB();// 添加Transaction交易记录tdb.addTransaction(new Transaction(new String[] { "a", "b", "c", "d" }));tdb.addTransaction(new Transaction(new String[] { "a", "b" }));tdb.addTransaction(new Transaction(new String[] { "b", "c" }));tdb.addTransaction(new Transaction(new String[] { "b", "c", "d", "e" }));// 规则最小支持度double minRuleConfidence = 0.5;Vector<AssoRule> vr = computeAssociationRules(tdb, minRuleConfidence);// 输出规则int i = 0;for (AssoRule ar : vr) {System.out.println("rule[" + (i++) + "]: " + ar);}}public Vector<AssoRule> computeAssociationRules(TransactionDB tdb,double ruleMinSupportPer) {// 输出关联规则Vector<AssoRule> var = new Vector<AssoRule>();// 计算最小支持度频项HashMap<String, Integer> minSupportMap = buildMinSupportFrequenceSet(tdb, 2);// 计算一项频项集HashMap<HashSet<String>, Integer> oneItemFS = new HashMap<HashSet<String>, Integer>();for (String key : minSupportMap.keySet()) {HashSet<String> oneItemSet = new HashSet<String>();oneItemSet.add(key);oneItemFS.put(oneItemSet, minSupportMap.get(key));}// 根据一项频项集合,递归计算规则buildRules(tdb, oneItemFS, var, ruleMinSupportPer);// 将规则按照可信度排序Collections.sort(var);return var;}public static void main(String[] args) {AprioriSetBasedDemo asbd = new AprioriSetBasedDemo();asbd.test();}}

运行结果如下:


rule[0]: {d }(2)==>b (2), confidence=100.0%
rule[1]: {d }(2)==>c (2), confidence=100.0%
rule[2]: {d, a }(1)==>c (1), confidence=100.0%
rule[3]: {d, a }(1)==>b (1), confidence=100.0%
rule[4]: {d, a }(1)==>b (1), confidence=100.0%
rule[5]: {d, c }(2)==>b (2), confidence=100.0%
rule[6]: {d, b, a }(1)==>c (1), confidence=100.0%
rule[7]: {d, b, a }(1)==>c (1), confidence=100.0%
rule[8]: {d, c, a }(1)==>b (1), confidence=100.0%
rule[9]: {b }(4)==>c (3), confidence=75.0%
rule[10]: {b, c }(3)==>d (2), confidence=66.66666666666666%
rule[11]: {b, c }(3)==>d (2), confidence=66.66666666666666%
rule[12]: {d }(2)==>a (1), confidence=50.0%
rule[13]: {b }(4)==>a (2), confidence=50.0%
rule[14]: {d, c }(2)==>b, a (1), confidence=50.0%
rule[15]: {d, b }(2)==>a (1), confidence=50.0%

这篇关于weka实战005:基于HashSet实现的apriori关联规则算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050850

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构