Faster-RCNN/SSD/训练将数据集做成VOC2007格式

2024-06-11 04:32

本文主要是介绍Faster-RCNN/SSD/训练将数据集做成VOC2007格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:
http://blog.csdn.net/sinat_30071459/article/details/50723212


0.文件夹名

首先,确定你的数据集所放的文件夹名字,例如我的叫logos。

(或者和voc2007一样的名字:VOC2007)

1.图片命名

虽然说图片名对训练没什么影响,但建议还是按VOC2007那样,如“000005.jpg”这种形式。至于图片格式,代码里是写的jpg,其他格式行不行我没有试过,我的训练集也是jpg格式的。
批量修改图片名字为VOC2007格式可以参考以下Matlab代码:
[plain]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. %%  
  2. %图片保存路径为:  
  3. %E:\image\car  
  4. %E:\image\person  
  5. %car和person是保存车和行人的文件夹  
  6. %这些文件夹还可以有多个,  
  7. %放在image文件夹里就行  
  8. %该代码的作用是将图片名字改成000123.jpg这种形式  
  9. %%  
  10. clc;  
  11. clear;  
  12.   
  13. maindir='E:\image\';  
  14. name_long=5; %图片名字的长度,如000123.jpg为6,最多9位,可修改  
  15. num_begin=1; %图像命名开始的数字如000123.jpg开始的话就是123  
  16.   
  17. subdir = dir(maindir);  
  18. n=1;  
  19.   
  20. for i = 1:length(subdir)  
  21.   if ~strcmp(subdir(i).name ,'.') && ~strcmp(subdir(i).name,'..')  
  22.      subsubdir = dir(strcat(maindir,subdir(i).name));  
  23.     for j=1:length(subsubdir)  
  24.          if ~strcmp(subsubdir(j).name ,'.') && ~strcmp(subsubdir(j).name,'..')  
  25.             img=imread([maindir,subdir(i).name,'\',subsubdir(j).name]);  
  26.             imshow(img);  
  27.             str=num2str(num_begin,'%09d');  
  28.             newname=strcat(str,'.jpg');  
  29.             newname=newname(end-(name_long+3):end);  
  30.             system(['rename ' [maindir,subdir(i).name,'\',subsubdir(j).name] ' ' newname]);  
  31.             num_begin=num_begin+1;  
  32.             fprintf('当前处理文件夹%s',subdir(i).name);  
  33.             fprintf('已经处理%d张图片\n',n);  
  34.             n=n+1;  
  35.            pause(0.1);%可以将暂停去掉  
  36.          end  
  37.     end  
  38.   end  
  39. end  
图片名如果比较特殊或者像1(1).jpg等这类可能无法重命名,可以使用imwrite,如:

[html]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. imwrite(img,strcat(save_path,newname));%改名后保存到另一文件夹,原图片不变  
也可以使用Total Commander来批量重命名,非常方便,推荐使用这个工具。

2.打框

就是所谓的包围框,将图片的中所框的目标信息保存起来,我的是保存到txt里,如下:
[plain]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. 000002.jpg car 44 28 132 121  
  2. 000003.jpg car 54 19 243 178  
  3. 000004.jpg car 168 6 298 164  
前面是图片名,中间是目标类别,最后是目标的包围框坐标(左上角和右下角坐标)。

3.做xml

将第2步得到的txt转成xml。 如果每张图片有一个或多个包围框,可参考代码: VOC2007xml(这份代码生成的xml训练Matlab版本的FRCNN可能会出错,最好用下面修改过的)
这份代码生成的xml第一行含有版本和编码信息:<?xml version="1.0" encoding="utf-8"?>,并且含有空格,用来训练Faster RCNN可能会有问题,如下:

(左边是VOC2007数据集中的xml,右边是上面代码生成的xml(第一行我删掉了),用Notepad打开就可以看到)

VOC2007中的xml前面是tab字符(左边那些箭头),上面代码生成的xml是空格(那些小黄点),所以,必须将空格转换成tab,下载修改过的代码: VOC2007xml_new
(下载VOC2007xml_new就可以了,不用下载VOC2007xml,不过如果xml用作其他用途还是可以的)
最终,得到的xml就和VOC一样。

4.保存xml到Annotations

新建一个文件夹,名字为Annotations,将xml文件全部放到该文件夹里。

5.将训练图片放到JPEGImages

新建一个文件夹,名字为JPEGImages,将所有的训练图片放到该文件夹里。

6.ImageSets\Main里的四个txt文件

新建文件夹,命名为ImageSets,在ImageSets里再新建文件夹,命名为Main。
我们可以通过xml名字(或图片名),生成四个txt文件,即:

txt文件中的内容为:
[plain]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. 000005  
  2. 000027  
  3. 000028  
  4. 000033  
  5. 000042  
  6. 000045  
  7. 000048  
  8. 000058  

即图片名字(无后缀),test.txt是测试集,train.txt是训练集,val.txt是验证集,trainval.txt是训练和验证集.VOC2007中,trainval大概是整个数据集的50%,test也大概是整个数据集的50%;train大概是trainval的50%,val大概是trainval的50%。可参考以下代码:
[html]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. %%  
  2. %该代码根据已生成的xml,制作VOC2007数据集中的trainval.txt;train.txt;test.txt和val.txt  
  3. %trainval占总数据集的50%,test占总数据集的50%;train占trainval的50%,val占trainval的50%;  
  4. %上面所占百分比可根据自己的数据集修改,如果数据集比较少,test和val可少一些  
  5. %%  
  6. %注意修改下面四个值  
  7. xmlfilepath='E:\Annotations';  
  8. txtsavepath='E:\ImageSets\Main\';  
  9. trainval_percent=0.5;%trainval占整个数据集的百分比,剩下部分就是test所占百分比  
  10. train_percent=0.5;%train占trainval的百分比,剩下部分就是val所占百分比  
  11.   
  12.   
  13. %%  
  14. xmlfile=dir(xmlfilepath);  
  15. numOfxml=length(xmlfile)-2;%减去.和..  总的数据集大小  
  16.   
  17.   
  18. trainval=sort(randperm(numOfxml,floor(numOfxml*trainval_percent)));  
  19. test=sort(setdiff(1:numOfxml,trainval));  
  20.   
  21.   
  22. trainvalsize=length(trainval);%trainval的大小  
  23. train=sort(trainval(randperm(trainvalsize,floor(trainvalsize*train_percent))));  
  24. val=sort(setdiff(trainval,train));  
  25.   
  26.   
  27. ftrainval=fopen([txtsavepath 'trainval.txt'],'w');  
  28. ftest=fopen([txtsavepath 'test.txt'],'w');  
  29. ftrain=fopen([txtsavepath 'train.txt'],'w');  
  30. fval=fopen([txtsavepath 'val.txt'],'w');  
  31.   
  32.   
  33. for i=1:numOfxml  
  34.     if ismember(i,trainval)  
  35.         fprintf(ftrainval,'%s\n',xmlfile(i+2).name(1:end-4));  
  36.         if ismember(i,train)  
  37.             fprintf(ftrain,'%s\n',xmlfile(i+2).name(1:end-4));  
  38.         else  
  39.             fprintf(fval,'%s\n',xmlfile(i+2).name(1:end-4));  
  40.         end  
  41.     else  
  42.         fprintf(ftest,'%s\n',xmlfile(i+2).name(1:end-4));  
  43.     end  
  44. end  
  45. fclose(ftrainval);  
  46. fclose(ftrain);  
  47. fclose(fval);  
  48. fclose(ftest);  

这四个txt放在ImageSets\Main中。

这样,数据集就基本做好了。然后新建文件夹,名字为logos(第0步确定的名字),将上面三个文件夹放到这里,即logos文件夹里有三个文件夹:


将logos文件夹拷贝到datasets\VOCdevkit2007里就可以了。
(或者替换voc2007数据集中的Annotations、ImageSets和JPEGImages,免去一些训练的修改)

Matlab版本faster-rcnn训练过程看 http://blog.csdn.net/sinat_30071459/article/details/50546891;
python版本faster-rcnn训练过程看 http://blog.csdn.net/sinat_30071459/article/details/51332084。

这篇关于Faster-RCNN/SSD/训练将数据集做成VOC2007格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050204

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者