大模型训练的艺术:从预训练到增强学习的四阶段之旅

2024-06-11 04:20

本文主要是介绍大模型训练的艺术:从预训练到增强学习的四阶段之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 大模型训练的艺术:从预训练到增强学习的四阶段之旅
    • 1. 预训练阶段(Pretraining)
    • 2. 监督微调阶段(Supervised Finetuning, SFT)
    • 3. 奖励模型训练阶段(Reward Modeling)
    • 4. 增强学习微调阶段(Reinforcement Learning, RL)

大模型训练的艺术:从预训练到增强学习的四阶段之旅

在这里插入图片描述

在当今人工智能领域,大型模型以其卓越的性能和广泛的应用前景,成为推动技术进步的重要力量。训练这样复杂的模型并非一日之功,而是需历经精心设计的四个阶段:预训练、监督微调(SFT)、奖励模型训练、以及增强学习微调(RL)。本文将深入探索这四大阶段,揭示每一步骤背后的技术逻辑和实施细节。

1. 预训练阶段(Pretraining)

核心目标: 构建一个对广泛数据具有普遍理解的基础模型。预训练阶段通过让模型在大规模未标注数据集上学习,来捕获语言、图像或其他类型数据的统计规律和潜在结构。这一步骤通常使用自监督学习策略,如掩码语言模型(如BERT)或对比学习(如SimCLR)。

实施细节: 模型会尝试预测被遮盖的部分或在图像中找出相似性,从而在无监督环境下学习数据的内在特征。此阶段需要大量计算资源,并且模型规模往往非常庞大,以便能更好地泛化至各种任务。

应用场景: 预训练模型如BERT、RoBERTa在自然语言处理领域被广泛应用,为后续的微调和具体任务适应奠定了坚实的基础。
在这里插入图片描述

2. 监督微调阶段(Supervised Finetuning, SFT)

核心目标: 将预训练得到的通用模型适应特定任务。通过在特定领域的带标签数据集上进行微调,模型学习特定任务的输出模式,比如情感分析、命名实体识别或图像分类。

实施细节: 在预训练模型的基础上,添加额外的输出层并使用监督学习策略,调整模型参数以最小化预测错误。这一阶段的训练数据相对较少,但针对性极强,使模型在特定任务上表现更佳。

应用场景: 例如,针对医疗记录的情感分析,会在预训练的语言模型基础上,使用标注了情感的医疗文本进行微调。
在这里插入图片描述

3. 奖励模型训练阶段(Reward Modeling)

核心目标: 为模型的行为制定评价标准。在某些复杂或开放式的任务中,简单的正确/错误标签不足以指导模型学习。奖励模型通过给模型的输出分配分数(奖励),引导其产生更高质量的输出。

实施细节: 通过人工或自动化方法,为模型的不同行为或生成内容分配奖励分数,建立奖励模型。这要求设计合理的奖励函数,确保模型追求的目标与实际任务目标一致。

应用场景: 在生成对话系统中,奖励模型可以用来评价对话的连贯性、信息丰富度和用户满意度,促使模型产生更加自然和有用的回复。
在这里插入图片描述

4. 增强学习微调阶段(Reinforcement Learning, RL)

核心目标: 通过与环境的互动,优化模型的决策策略。增强学习阶段利用奖励信号,使模型在特定环境中通过试错学习,不断优化其行为策略,以最大化长期奖励。

实施细节: 模型在环境中采取行动,根据奖励模型给出的反馈调整策略。这通常涉及策略梯度方法等技术,模型通过多次迭代逐渐学会如何做出最优选择。

应用场景: 在游戏AI、自动机器人导航等场景,增强学习能让模型在动态环境中自主学习最佳策略,实现高效解决问题的能力。
在这里插入图片描述

结语

这四个阶段构成了一个系统化的训练流程,从广泛而基础的预训练,到针对任务的精炼微调,再到高级的策略优化,每一步都是为了让模型更加智能、高效地服务于特定应用场景。随着技术的不断演进,这一流程也在持续优化,推动着大模型向更广泛、更深层次的应用领域迈进。

这篇关于大模型训练的艺术:从预训练到增强学习的四阶段之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050185

相关文章

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe