基于JavaScript 实现近邻算法以及优化方案

2024-06-10 23:36

本文主要是介绍基于JavaScript 实现近邻算法以及优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

近邻算法(K-Nearest Neighbors,简称 KNN)是一种简单的、广泛使用的分类和回归算法。它的基本思想是:给定一个待分类的样本,找到这个样本在特征空间中距离最近的 k 个样本,这 k 个样本的多数类别作为待分类样本的类别。

本教程文章将详细讲解如何使用 JavaScript 实现一个简单的 KNN 算法,我们会从理论出发,逐步从零开始编写代码。

理论基础

距离度量

KNN 算法的核心是计算两个样本之间的距离,常用的距离度量方法有:

  • 欧氏距离(Euclidean Distance)
  • 曼哈顿距离(Manhattan Distance)

在本教程中,我们将使用最常见的欧氏距离来计算样本之间的距离。

欧氏距离公式如下:

[ d(p, q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} ]

其中 ( p ) 和 ( q ) 是两个 n 维空间中的点, ( p_i ) 和 ( q_i ) 是这两个点在第 ( i ) 维的坐标。

算法步骤

  1. 计算距离:计算待分类样本与训练样本集中所有样本的距离。
  2. 排序:按距离从小到大对所有距离进行排序。
  3. 选择最近的 k 个样本:从排序后的结果中选择距离最近的 k 个样本。
  4. 投票:多数投票决定待分类样本的类别。

实现步骤

初始化数据

首先,我们需要一些样本数据来进行分类。假设我们有以下二维数据集:

const trainingData = [{ x: 1, y: 2, label: 'A' },{ x: 2, y: 3, label: 'A' },{ x: 3, y: 3, label: 'B' },{ x: 6, y: 5, label: 'B' },{ x: 7, y: 8, label: 'B' },{ x: 8, y: 8, label: 'A' },
];

计算距离

编写一个函数来计算两个点之间的欧氏距离:

function euclideanDistance(point1, point2) {return Math.sqrt(Math.pow(point1.x - point2.x, 2) +Math.pow(point1.y - point2.y, 2));
}

排序并选择最近的 k 个样本

编写一个函数,根据距离对样本进行排序,并选择距离最近的 k 个样本:

function getKNearestNeighbors(trainingData, testPoint, k) {const distances = trainingData.map((dataPoint) => ({...dataPoint,distance: euclideanDistance(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, k);
}

多数投票

编写一个函数,通过多数投票来决定类别:

function majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);
}

主函数

最后,编写一个主函数来整合上述步骤,完成 KNN 算法:

function knn(trainingData, testPoint, k) {const neighbors = getKNearestNeighbors(trainingData, testPoint, k);return majorityVote(neighbors);
}

测试

现在我们来测试一下这个 KNN 实现:

const testPoint = { x: 5, y: 5 };
const k = 3;const result = knn(trainingData, testPoint, k);
console.log(`The predicted label for the test point is: ${result}`);

运行这个代码,你会得到预测的类别。

优化方案

虽然我们已经实现了一个基本的 KNN 算法,但在实际应用中,我们还可以进行一些优化和扩展,使其更加高效和实用。

优化距离计算

在大数据集上,计算每个点之间的欧氏距离可能会很耗时。我们可以通过一些高效的数据结构如 KD 树(K-Dimensional Tree)来进行快速邻近搜索。以下是一个简单的 KD 树的实现示例:

class KDTree {constructor(points, depth = 0) {if (points.length === 0) {this.node = null;return;}const k = 2; // 2Dconst axis = depth % k;points.sort((a, b) => a[axis] - b[axis]);const median = Math.floor(points.length / 2);this.node = points[median];this.left = new KDTree(points.slice(0, median), depth + 1);this.right = new KDTree(points.slice(median + 1), depth + 1);}nearest(point, depth = 0, best = null) {if (this.node === null) {return best;}const k = 2;const axis = depth % k;let nextBranch = null;let oppositeBranch = null;if (point[axis] < this.node[axis]) {nextBranch = this.left;oppositeBranch = this.right;} else {nextBranch = this.right;oppositeBranch = this.left;}best = nextBranch.nearest(point, depth + 1, best);const dist = euclideanDistance(point, this.node);if (best === null || dist < euclideanDistance(point, best)) {best = this.node;}if (Math.abs(point[axis] - this.node[axis]) < euclideanDistance(point, best)) {best = oppositeBranch.nearest(point, depth + 1, best);}return best;}
}const points = trainingData.map(point => [point.x, point.y, point.label]);
const kdTree = new KDTree(points);const nearestPoint = kdTree.nearest([testPoint.x, testPoint.y]);
console.log(`The nearest point is: ${nearestPoint[2]}`);

考虑不同距离度量

不同的距离度量方法在不同的场景下可能会有不同的效果。除了欧氏距离外,还可以尝试以下几种距离度量方法:

  • 曼哈顿距离(Manhattan Distance)
  • 闵可夫斯基距离(Minkowski Distance)
  • 切比雪夫距离(Chebyshev Distance)

我们可以编写一些函数来实现这些距离度量方法,并在主函数中进行选择:

function manhattanDistance(point1, point2) {return Math.abs(point1.x - point2.x) + Math.abs(point1.y - point2.y);
}function minkowskiDistance(point1, point2, p) {return Math.pow(Math.pow(Math.abs(point1.x - point2.x), p) +Math.pow(Math.abs(point1.y - point2.y), p),1 / p);
}function chebyshevDistance(point1, point2) {return Math.max(Math.abs(point1.x - point2.x), Math.abs(point1.y - point2.y));
}

调整 k 值

选择合适的 k 值对算法的性能至关重要。过小的 k 值可能导致过拟合,而过大的 k 值可能导致欠拟合。一个常见的做法是通过交叉验证来选择最优的 k 值。

处理多维数据

在实际应用中,数据通常是多维的。我们的算法已经可以处理二维数据,但对于多维数据,只需稍微调整距离计算函数即可:

function euclideanDistanceND(point1, point2) {let sum = 0;for (let i = 0; i < point1.length; i++) {sum += Math.pow(point1[i] - point2[i], 2);}return Math.sqrt(sum);
}

代码重构

为了更好地组织代码,我们可以将不同的功能模块化:

class KNN {constructor(k = 3, distanceMetric = euclideanDistance) {this.k = k;this.distanceMetric = distanceMetric;}fit(trainingData) {this.trainingData = trainingData;}predict(testPoint) {const neighbors = this.getKNearestNeighbors(testPoint);return this.majorityVote(neighbors);}getKNearestNeighbors(testPoint) {const distances = this.trainingData.map((dataPoint) => ({...dataPoint,distance: this.distanceMetric(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, this.k);}majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);}
}// 测试代码
const knnClassifier = new KNN(3, euclideanDistance);
knnClassifier.fit(trainingData);
const predictedLabel = knnClassifier.predict(testPoint);
console.log(`The predicted label for the test point is: ${predictedLabel}`);

通过这种方式,我们不仅提高了代码的可读性和可维护性,还为将来更复杂的扩展和优化打下了基础。

结语

KNN 算法简单易懂,适用于很多分类问题,特别是在数据规模不大时。然而,KNN 的计算复杂度较高,尤其在高维数据和大规模数据集上,因此在实际应用中常常需要结合其他技术进行优化。

这篇关于基于JavaScript 实现近邻算法以及优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049591

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关