从零开始理解AdaBoost算法:设计思路与算法流程(二)【权值更新与加权表决、数学公式】

本文主要是介绍从零开始理解AdaBoost算法:设计思路与算法流程(二)【权值更新与加权表决、数学公式】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设计思路

AdaBoost算法属于Boosting算法家族中的一种,其基本思路是将多个弱分类器组合成一个强分类器。

  • “强分类器”是指一个分类准确率较高的模型
  • “弱分类器”则是指分类准确率略高于随机猜测的简单模型。

AdaBoost的核心思想是通过 加权 的方式逐步提高分类器的性能。

首先来看AdaBoost的数学表达,使用的是 加法模型

f ( x ) = ∑ m = 1 M α m G m ( x ) = α 1 G 1 ( x ) + α 2 G 2 ( x ) + ⋯ + α M G M ( x ) f(x) = \sum_{m=1}^{M} \alpha_m G_m(x) = \alpha_1 G_1(x) + \alpha_2 G_2(x) + \cdots + \alpha_M G_M(x) f(x)=m=1MαmGm(x)=α1G1(x)+α2G2(x)++αMGM(x)

其中,每一个 G m ( x ) G_m(x) Gm(x) 是一个弱分类器, α m \alpha_m αm 是该分类器的权重。

在训练第 m m m个弱分类器 G m ( x ) G_m(x) Gm(x) 时,我们会记录哪些样本被 错误分类 ,哪些样本被 正确分类 。在下一轮训练时,我们需要增加那些被错误分类样本的权值,同时减少正确分类样本的权值,以此来训练新的弱分类器。这样一来,那些没有得到正确分类的数据,由于权值加大,会受到后续分类器更多的关注。

什么叫样本的权值?如何理解改变?

样本的权值可以理解为在训练集中每个样本的 相对重要性

举个例子,假设有三个样本,初始时每个样本的权值都是1/3。如果在第一轮分类中,有两个样本被正确分类,一个样本被错误分类,那么在下一轮中我们会降低被正确分类样本的权值,增加被错误分类样本的权值。

具体来说,假设有三个样本的初始权值如下:

  • 样本1:1/3
  • 样本2:1/3
  • 样本3:1/3

如果在第一轮中,样本1被错误分类,样本2和样本3被正确分类,我们会调整它们的权值为:

  • 样本1:2/3 = 4/6(因为分类错误,我们需要增加其权值)
  • 样本2:1/6(因为分类正确,我们需要减少其权值)
  • 样本3:1/6(因为分类正确,我们需要减少其权值)

此时相当于在样本1具有 4份,样本2和3都 只有1份 ;这样调整权值的目的是在下一轮训练时让分类器更加关注分类错误的样本。

权值如何得到?

AdaBoost采用加权多数表决,即通过加权的 线性相加 来决定最终的分类结果。

权值 α m \alpha_m αm受到弱分类器 G m ( x ) G_m(x) Gm(x)的分类误差率的影响,当分类误差较小的弱分类器其权值更大,反之,分类误差较大的弱分类器其权值更小。

具体来说:

  • 增大分类误差小的弱分类器的权值,使其在表决中起较大的作用;
  • 减小分类误差大的弱分类器的权值,使其在表决中起较小的作用。

这些权值的数学表达如下:

α m = 1 2 ln ⁡ ( 1 − ϵ m ϵ m ) \alpha_m = \frac{1}{2} \ln\left(\frac{1 - \epsilon_m}{\epsilon_m}\right) αm=21ln(ϵm1ϵm)

其中, ϵ m \epsilon_m ϵm是弱分类器 G m ( x ) G_m(x) Gm(x)的分类误差率。通过这个公式可以看出,当分类误差 ϵ m \epsilon_m ϵm较小时, α m \alpha_m αm较大;当分类误差 ϵ m \epsilon_m ϵm较大时, α m \alpha_m αm较小。

公式中的特点

这个权值公式有以下两个特点:

  1. 自适应调整:权值的调整是自适应的,根据每轮弱分类器的分类效果来决定下一轮的样本权值分布。这样可以确保后续的弱分类器对前面分类错误的样本给予更多关注,提高整体分类器的性能。

  2. 误差控制:通过对每个弱分类器的权值进行加权多数表决,可以有效地控制整体分类器的误差。由于每个弱分类器的权值是根据其分类误差率计算的,因此最终组合的强分类器可以显著降低整体的分类误差。

算法流程

第一步:获取数据集

假设数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} D={(x1,y1),(x2,y2),,(xN,yN)},其中 y ∈ { − 1 , 1 } y \in \{-1, 1\} y{1,1}

第二步:定义基分类器

基分类器 G ( x ) G(x) G(x)可以是逻辑回归、决策树等。选择逻辑回归时,采用交叉熵损失函数和梯度下降方法进行优化。

第三步:循环训练基分类器

  1. 初始化权值 D 1 = ( w 1 , 1 , … , w 1 , N ) = ( 1 N , … , 1 N ) D_1 = (w_{1,1}, \dots, w_{1,N}) = (\frac{1}{N}, \dots, \frac{1}{N}) D1=(w1,1,,w1,N)=(N1,,N1)
  2. 训练基分类器 G m ( x ) G_m(x) Gm(x):如使用逻辑回归,采用交叉熵损失函数和梯度下降方法。
  3. 计算分类误差率 e m = ∑ i = 1 N w m , i ⋅ I ( G m ( x i ) ≠ y i ) e_m = \sum_{i=1}^N w_{m,i} \cdot I(G_m(x_i) \neq y_i) em=i=1Nwm,iI(Gm(xi)=yi)
  4. 计算权重系数 α m = 1 2 ln ⁡ ( 1 − e m e m ) \alpha_m = \frac{1}{2} \ln \left(\frac{1-e_m}{e_m}\right) αm=21ln(em1em)
  5. 更新权值 w m + 1 , i = w m , i ⋅ exp ⁡ ( − α m ⋅ y i ⋅ G m ( x i ) ) w_{m+1,i} = w_{m,i} \cdot \exp(-\alpha_m \cdot y_i \cdot G_m(x_i)) wm+1,i=wm,iexp(αmyiGm(xi)),并进行归一化。
  6. 更新加法模型 f ( x ) = f ( x ) + α m ⋅ G m ( x ) f(x) = f(x) + \alpha_m \cdot G_m(x) f(x)=f(x)+αmGm(x)
  7. 判断退出条件:若达到指定的分类器数量或总误差率低于设定值,则停止训练。

第一次训练

假设这是第一次训练,首先需要初始化权值分布 D 1 = ( w 11 , … , w 1 i ) D_1 = (w_{11}, \ldots, w_{1i}) D1=(w11,,w1i),默认每个样本的权值均匀分布为 1 N \frac{1}{N} N1

然后训练第一个基分类器,例如逻辑回归:使用交叉熵损失函数并通过梯度下降进行优化。

计算分类误差率
  1. 计算当前训练集上的分类误差率 e m e_m em,范围在 0 ≤ e m ≤ 0.5 0 \leq e_m \leq 0.5 0em0.5
    e m = ∑ i = 1 N w m , i I ( y i ≠ G m ( x i ) ) e_m = \sum_{i=1}^{N} w_{m,i} I(y_i \neq G_m(x_i)) em=i=1Nwm,iI(yi=Gm(xi))
    其中, I I I 是指示函数,当 y i ≠ G m ( x i ) y_i \neq G_m(x_i) yi=Gm(xi) 时, I ( y i ≠ G m ( x i ) ) = 1 I(y_i \neq G_m(x_i)) = 1 I(yi=Gm(xi))=1,否则为0。误差率不能超过0.5;因为如果错误率大于0.5,可以 反向预测 ,将错误率降低到0.5以下; w m , i w_{m,i} wm,i是权值,是小于1的数。

  2. 计算权重系数 α m \alpha_m αm,根据以下公式:
    α m = 1 2 ln ⁡ ( 1 − e m e m ) \alpha_m = \frac{1}{2} \ln\left(\frac{1 - e_m}{e_m}\right) αm=21ln(em1em)
    权重系数 α m \alpha_m αm 的值由分类误差率 e m e_m em 决定。 α m \alpha_m αm 越大,说明该分类器的权重越大,即分类效果越好。

函数分析:

  • 对于 1 − e m e m = 1 e m − 1 \frac{1-e_m}{e_m} = \frac{1}{e_m} - 1 em1em=em11,随着 e m e_m em 由0增加到0.5,函数从 + ∞ +\infty +变到0;
    在这里插入图片描述
  • 对于 ln ⁡ ( x ) \ln(x) ln(x) 函数,随着 x x x 从 1 增加到无穷大, ln ⁡ ( x ) \ln(x) ln(x) 从 0 增加到正无穷。
    在这里插入图片描述

因此,随着 误差率 e m e_m em 减小, 1 − e m e m \frac{1-e_m}{e_m} em1em 增大,样本的权值 α m \alpha_m αm 增大。误差率很大的情况下,权重 α m \alpha_m αm 也会较小,这是因为分类器在这轮的效果不好, 不应在最终的分类决策中占很大权重

更新权值分布

根据计算出的分类误差率 e m e_m em 和权重系数 α m \alpha_m αm,更新样本的权值分布 D m + 1 D_{m+1} Dm+1,步骤如下:

  1. 计算新的权值 w m + 1 , i w_{m+1, i} wm+1,i
    w m + 1 , i = w m , i exp ⁡ ( − α m y i G m ( x i ) ) w_{m+1, i} = w_{m,i} \exp(-\alpha_m y_i G_m(x_i)) wm+1,i=wm,iexp(αmyiGm(xi))
    式中:

    • 当样本 x i x_i xi 被正确分类时, y i G m ( x i ) > 0 y_i G_m(x_i) > 0 yiGm(xi)>0,则 exp ⁡ ( − α m y i G m ( x i ) ) < 1 \exp(-\alpha_m y_i G_m(x_i)) < 1 exp(αmyiGm(xi))<1,权值 w m + 1 , i w_{m+1, i} wm+1,i 变小;
    • 当样本 x i x_i xi 被错误分类时, y i G m ( x i ) < 0 y_i G_m(x_i) < 0 yiGm(xi)<0,则 exp ⁡ ( − α m y i G m ( x i ) ) > 1 \exp(-\alpha_m y_i G_m(x_i)) > 1 exp(αmyiGm(xi))>1,权值 w m + 1 , i w_{m+1, i} wm+1,i 变大。
  2. 进行归一化:
    w m + 1 , i = w m + 1 , i ∑ j = 1 N w m + 1 , j w_{m+1, i} = \frac{w_{m+1, i}}{\sum_{j=1}^{N} w_{m+1, j}} wm+1,i=j=1Nwm+1,jwm+1,i
    确保所有样本的权值之和为1。

更新加法模型

更新加法模型 f ( x ) f(x) f(x)
f ( x ) = f ( x ) + α m G m ( x ) f(x) = f(x) + \alpha_m G_m(x) f(x)=f(x)+αmGm(x)
至此,第一轮训练完成,得到第一个弱分类器 G 1 ( x ) G_1(x) G1(x) 及其权重系数 α 1 \alpha_1 α1

判断循环满足条件

每训练一个弱分类器 G m G_m Gm后,进行以下判断:

  1. 若基分类器数量已达到预设的最大迭代次数,则停止训练。
  2. 若当前集成分类器 f ( x ) f(x) f(x)的分类误差率低于设定的阈值,则停止训练。

在实际应用中,通常会选择第一种方式,以保证训练过程的稳定性和效率。

总结:

AdaBoost是一种通过不断迭代、逐步优化的机器学习算法。通过自适应地调整样本权值和弱分类器权重,能够有效地提升分类器的性能。在实际应用中,适当选择基分类器类型和迭代次数,对于提高算法的分类效果至关重要。

这篇关于从零开始理解AdaBoost算法:设计思路与算法流程(二)【权值更新与加权表决、数学公式】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048914

相关文章

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl