算法金 | AI 基石,无处不在的朴素贝叶斯算法

2024-06-10 13:36

本文主要是介绍算法金 | AI 基石,无处不在的朴素贝叶斯算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

历史上,许多杰出人才在他们有生之年默默无闻,

却在逝世后被人们广泛追忆和崇拜。

18世纪的数学家托马斯·贝叶斯(Thomas Bayes)便是这样一位人物

贝叶斯的研究,初看似平凡,其人亦未显赫。

其论文,逝后一年,方由友手于1763年公诸于世。

如梵高之画,生前默默无闻,逝后价值倍增。

贝叶斯定理,两百年沉埋,因违旧学,被疑“非科学”。

但在 20 世纪,这一理论被重新发现并广泛应用于各个领域,如机器学习、医学诊断和金融分析等

它是隐藏在 AI 背后的智能基石。

1. 贝叶斯定理

1.1 基本概念

1.2 数学公式

为了更好地理解贝叶斯定理,我们可以用一个例子来说明。假设我们有一组关于江湖门派的武林高手的信息:

2. 朴素贝叶斯分类器

2.1 概述

朴素贝叶斯分类器是一种基于贝叶斯定理的简单但强大的分类算法。它假设特征之间是独立的,即某一特征的出现与其他特征的出现没有关系。尽管这一假设在实际中很少成立,但朴素贝叶斯分类器在许多实际问题中表现非常出色。简直是神奇绝绝子~

2.2 数学公式

朴素贝叶斯分类器的核心公式如下:

添加图片注释,不超过 140 字(可选)

2.3 应用领域

朴素贝叶斯分类器广泛应用于文本分类、垃圾邮件检测、情感分析等领域。例如,它可以用来根据电子邮件的内容判断一封邮件是否为垃圾邮件。

3. 贝叶斯网络

3.1 概述

贝叶斯网络是一种表示变量之间条件依赖关系的有向无环图。它不仅可以用于概率推断,还能用于决策分析、因果推理等领域。贝叶斯网络的节点表示随机变量,边表示变量之间的条件依赖关系。

3.2 结构与组成

贝叶斯网络由节点和有向边组成。每个节点对应一个随机变量,而有向边表示两个变量之间的条件依赖关系。贝叶斯网络的结构和条件概率分布可以通过观察数据和领域知识来构建。

例如,我们可以构建一个简单的贝叶斯网络来描述武侠门派之间的关系:

  • 节点 A:门派(少林、武当、峨眉、华山、丐帮)
  • 节点 B:内力水平
  • 节点 C:是否为武林高手

节点 A 和 B 之间有一条有向边,表示门派影响内力水平;节点 B 和 C 之间有一条有向边,表示内力水平影响是否为武林高手。

3.3 应用领域

贝叶斯网络广泛应用于医学诊断、风险管理、故障检测等领域。例如,在医学诊断中,贝叶斯网络可以用来推断患者的疾病类型及其可能的病因。

更多应用,见算法金 往期微*公*号 文章: 最经典的一个算法 - 贝叶斯算法,附 Python 代码

4. 贝叶斯推理

4.1 概述

贝叶斯推理是一种基于贝叶斯定理的推理方法,用于更新对某一事件的信念。它在统计推断、机器学习、人工智能等领域具有广泛应用。贝叶斯推理可以根据新证据不断调整对事件的概率估计,使其更符合实际情况。

4.2 贝叶斯更新

贝叶斯更新是贝叶斯推理的核心过程。当新的证据出现时,我们可以使用贝叶斯定理来更新事件的概率。例如,假设我们已经知道某人来自少林派,现在我们得到新的证据,该人具有很高的内力。我们可以使用贝叶斯定理来更新该人是武林高手的概率。

4.3 实际应用

为了使大侠更好地理解贝叶斯推理的实际应用,我们用一个包含武侠元素的数据集来演示贝叶斯推理的过程。

4.4 代码示范

下面,我们使用贝叶斯更新来进行推理,假设我们有一个包含武侠元素的数据集,并使用 scipy 库进行推理。

import scipy.stats as stats# 生成武侠数据集
np.random.seed(42)
data = {'门派': np.random.choice(['少林', '武当', '峨眉', '华山', '丐帮'], 100),'内力': np.random.randint(50, 150, 100),'是否高手': np.random.choice([1, 0], 100, p=[0.3, 0.7])
}
df = pd.DataFrame(data)# 先验概率 P(高手|少林)
prior_prob = df[df['门派'] == '少林']['是否高手'].mean()# 似然函数 P(高内力|高手) 和 P(高内力|少林)
likelihood_high_power_given_master = stats.norm(loc=120, scale=10).pdf(140)  # 高手的高内力分布
likelihood_high_power_given_shaolin = df[df['门派'] == '少林']['内力'].mean()# 证据 P(高内力)
evidence = df['内力'].mean()# 贝叶斯更新
posterior_prob = (likelihood_high_power_given_master * prior_prob) / likelihood_high_power_given_shaolinprint(f'更新后的概率: {posterior_prob:.2f}')# 可视化贝叶斯更新过程
labels = ['Prior', 'Likelihood', 'Posterior']
values = [prior_prob, likelihood_high_power_given_master, posterior_prob]plt.figure(figsize=(10, 6))
plt.bar(labels, values, color=['skyblue', 'lightgreen', 'salmon'])
plt.xlabel('阶段')
plt.ylabel('概率')
plt.title('贝叶斯更新过程')
plt.show()

运行后输出:更新后的概率: 0.73

  1. 先验(Prior):
  • 先验概率表示在没有新证据的情况下,我们对某个事件的初始信念。在这个例子中,先验概率是某人是少林派的情况下,他是武林高手的概率。
  • 在图中,先验概率的条形显示了我们在新证据(内力水平)出现之前对某人是武林高手的初始信念。
  • 似然(Likelihood):
  • 似然函数表示在给定条件下某个事件发生的可能性。在这个例子中,似然函数是某人是武林高手的情况下,他具有高内力的概率。
  • 图中显示的似然概率条形代表了如果某人是武林高手,他具有高内力的可能性。
  • 后验(Posterior):
  • 后验概率是结合新证据后更新的信念。在这个例子中,后验概率是某人具有高内力的情况下,他是少林派的武林高手的概率。
  • 图中后验概率的条形显示了在考虑新证据(高内力)后,我们对某人是武林高手的更新后的信念。

具体解释

  • 先验概率:大约0.5,表示在没有额外信息的情况下,有50%的可能性某人是少林派的武林高手。
  • 似然概率:大约0.024,表示如果某人是武林高手,他具有140内力的可能性较低。
  • 后验概率:0.73,表示结合新证据(高内力)后,我们更新后的信念,即某人是少林派的武林高手的概率显著提高。

通过这个可视化图表,我们可以清晰地看到贝叶斯更新过程如何结合先验信息和新证据来调整对某个事件的概率估计,从而提供更加合理的决策依据。

5. 贝叶斯算法的优缺点

5.1 优点

大侠,贝叶斯算法有许多优点,使其在各种应用中广受欢迎:

  1. 处理不确定性:贝叶斯算法可以很好地处理不确定性,更新概率以反映新信息。
  2. 灵活性:适用于多种数据类型和应用场景,无论是分类、回归还是决策分析。
  3. 直观性:贝叶斯定理提供了一个清晰的数学框架,使推理过程直观且易于解释。

5.2 缺点

然而,贝叶斯算法也有其局限性:

  1. 计算复杂性:当涉及多个变量时,计算量可能会迅速增加,尤其是在大数据集上。
  2. 先验选择:先验概率的选择对结果有较大影响,且在缺乏领域知识时可能难以确定。
  3. 独立假设:朴素贝叶斯假设特征独立,这在实际中很少成立,可能导致性能下降。

5.3 适用场景

贝叶斯算法适用于以下场景:

  1. 小数据集:贝叶斯算法在小数据集上通常表现良好,因为它能有效结合先验知识。
  2. 不确定性高:在需要处理高不确定性的数据时,贝叶斯算法表现出色。
  3. 解释性要求高:当需要解释模型决策过程时,贝叶斯算法提供了清晰的框架。

6. 贝叶斯算法在机器学习中的应用

6.1 自然语言处理

贝叶斯算法在自然语言处理(NLP)中具有广泛应用。朴素贝叶斯分类器常用于文本分类任务,如垃圾邮件检测和情感分析。它通过计算词语在不同类别中的条件概率来进行分类。

6.2 图像识别

在图像识别领域,贝叶斯算法可用于处理不确定性。例如,在医学影像分析中,贝叶斯网络可以结合多个影像特征来推断疾病的可能性,提供更准确的诊断。

6.3 其他应用领域

贝叶斯算法还应用于金融风险管理、市场营销分析和推荐系统等领域。它能够处理复杂的概率关系,为决策提供强有力的支持。

代码示范

下面,我们将展示贝叶斯算法在垃圾邮件检测中的应用,并进行结果的可视化。

import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
import random# 生成武侠邮件数据集
emails = []
labels = []# 垃圾邮件样本
spam_phrases = ['免费的', '学会这几招', '武功秘籍', '银行账户有异常活动', '购买武器打折促销','今日特价', '限时优惠', '点击获取', '立即下载', '尊敬的大侠'
]# 正常邮件样本
ham_phrases = ['天气真好', '适合练功', '信用卡账单已生成', '今晚有场比武大赛', '好友邀请你加入','武术交流大会', '闭关修炼活动', '诚邀各位大侠', '本月活动', '成为一名弟子'
]# 生成邮件
for _ in range(1000):if random.random() > 0.5:email = ','.join(random.sample(spam_phrases, 3))emails.append(email)labels.append('垃圾邮件')else:email = ','.join(random.sample(ham_phrases, 3))emails.append(email)labels.append('正常邮件')# 特征提取
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(emails)
y = np.array([1 if label == '垃圾邮件' else 0 for label in labels])# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)# 训练朴素贝叶斯分类器
nb_classifier = MultinomialNB()
nb_classifier.fit(X_train, y_train)# 预测
y_pred = nb_classifier.predict(X_test)# 评估
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)print(f'准确率: {accuracy:.2f}')
print('混淆矩阵:')
print(conf_matrix)# 可视化结果
labels = ['正常邮件', '垃圾邮件']
fig, ax = plt.subplots(figsize=(8, 6))
cax = ax.matshow(conf_matrix, cmap=plt.cm.Blues)
plt.title('垃圾邮件检测的混淆矩阵')
fig.colorbar(cax)
ax.set_xticklabels([''] + labels)
ax.set_yticklabels([''] + labels)
plt.xlabel('预测标签')
plt.ylabel('真实标签')

[ 抱个拳,总个结 ]

贝叶斯算法以其处理不确定性的独特优势,在统计推断和机器学习中占据了重要地位。通过结合先验知识和新证据,贝叶斯方法能够动态更新概率,使决策过程更加合理和精确。此外,贝叶斯算法的直观性和解释性也使其在实际应用中非常受欢迎。

贝叶斯算法的应用前景十分广阔。它在自然语言处理、图像识别、医学诊断、金融风险管理等领域已经展现出了巨大的潜力。例如,在自然语言处理中,朴素贝叶斯分类器能够有效地进行文本分类和情感分析;在医学影像分析中,贝叶斯网络能够结合多种特征进行精确的疾病诊断。

祝在武林的征途上,一帆风顺,武运昌隆!

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

节日安康呀,喵~

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

这篇关于算法金 | AI 基石,无处不在的朴素贝叶斯算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048305

相关文章

揭秘未来艺术:AI绘画工具全面介绍

📑前言 随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面。在艺术创作领域,AI技术同样展现出了其独特的魅力。今天,我们就来一起探索这个神秘而引人入胜的领域,深入了解AI绘画工具的奥秘及其为艺术创作带来的革命性变革。 一、AI绘画工具的崛起 1.1 颠覆传统绘画模式 在过去,绘画是艺术家们通过手中的画笔,蘸取颜料,在画布上自由挥洒的创造性过程。然而,随着AI绘画工

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

AI儿童绘本创作

之前分享过AI儿童绘画的项目,但是主要问题是角色一致要花费很长的时间! 今天发现了这款,非常奈斯! 只需输入故事主题、风格、模板,软件就会自动创作故事内容,自动生成插画配图,自动根据模板生成成品,测试效果如下图。 变现方式:生成儿童绘本发布到各平台,吸引宝妈群体进私域。  百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

【新闻】AI程序员要来了吗?阿里云官宣

内容提要 6 月 21 日,在阿里云上海 AI 峰会上,阿里云宣布推出首个AI 程序员。 据介绍,这个AI程序员具备架构师、开发工程师、测试工程师等多种岗位的技能,能一站式自主完成任务分解、代码编写、测试、问题修复、代码提交整个过程,最快分钟级即可完成应用开发,大幅提升研发效率。 近段时间以来,有关AI的实践应用突破不断,全球开发者加速研发步伐。有业内人士坦言,随着大模型性能逐渐提升,AI应

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

AI元宇宙

随着科技的迅猛发展,人工智能(AI)迎来了一个宇宙大爆发的时代。特别是以GPT为代表的生成式大模型的诞生和不断进步,彻底改变了人们的工作和生活方式。程序员与AI协同工作写代码已成为常态,大模型不仅提高了工作效率,还为人类带来了无限的可能性。 AI元宇宙http://ai.toolxq.com/#/如同生物进化出眼睛打开了三维世界的元宇宙之后,GPT打开了人+AI工作模式的新时代,程序员的人生被划