文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及电力不平衡风险的配电网分区协同规划》

本文主要是介绍文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及电力不平衡风险的配电网分区协同规划》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是关于配电网在大规模分布式可再生能源接入背景下,如何进行计及电力不平衡风险的分区协同规划。以下是论文的主要内容:

研究背景:

  • 为了实现“双碳”目标,配电网需要接纳越来越多的分布式可再生能源,这些能源的波动性和不确定性给配电网的电力平衡带来了挑战。

研究目的:

  • 提出一种配电网分区协同规划方法,考虑电力不平衡风险,以优化配电网的运行和规划。

主要内容:

  1. 源荷特性仿射模型:基于非参数估计方法构建,用于描述源荷特性的时序波动性和不确定性。
  2. Wasserstein 距离指标:用于聚类,减少时序预测误差概率分布的数量。
  3. A*算法:计算在电力廊道受限条件下负荷点之间的距离,构建负荷点间距离矩阵和功率特性匹配度矩阵,以划分馈线区块。
  4. 电力不平衡风险价值 (PIRV):提出计算方法,量化灵活性资源水平与电力不平衡风险的关系。
  5. 配电网双层协同规划模型:上层以线路和储能装置投资费用最低为目标,下层以配电网运行成本和电力不平衡风险成本最低为目标。

研究方法:

  • 采用蒙特卡洛模拟法和二阶锥方法对规划模型进行求解。

算例分析:

  • 以西北某地区实际配电网为案例,验证所提方法的有效性和优越性。
  • 对比了不同规划方法,包括鲁棒规划方法、基于典型日分析的确定性规划方法以及考虑电力不平衡风险的规划方法。

结论:

  • 提出的规划方法能够有效降低配电网的电力不平衡风险,提高新能源的消纳能力,实现配电网的协调规划运行。

关键词:

  • 源荷特性
  • 馈线区块
  • 源网荷储
  • 不确定性
  • 配电网规划

为了复现论文中的仿真实验,我们可以遵循以下步骤,并以程序语言的方式表示关键的伪代码:

仿真复现思路:

  1. 数据准备:收集配电网的历史风光出力和负荷需求数据。

  2. 源荷特性仿射模型构建

    • 使用高斯核密度估计方法和EM算法计算时序预测偏差的概率分布。
    • 采用Wasserstein距离指标合并相似的预测误差概率分布。
  3. 馈线区块划分

    • 使用A*算法计算考虑电力廊道建设空间限制下负荷点间的距离。
    • 构建负荷点间距离矩阵和功率特性匹配度矩阵。
  4. 电力不平衡风险价值 (PIRV) 计算

    • 量化灵活性资源水平与电力不平衡风险的关系。
  5. 配电网双层协同规划模型求解

    • 上层规划模型:最小化线路和储能装置投资费用。
    • 下层优化运行模型:最小化运行成本和电力不平衡风险成本。
  6. 模型求解

    • 使用分支定界法和内点法求解混合整数线性规划问题。
  7. 结果分析

    • 对比不同规划方法的年化投资成本、运行成本、弃电和切负荷量。
  8. 灵活性资源调控结果分析

    • 分析储能充放电功率、净负荷曲线、线路负载率等指标。

程序语言伪代码:

# 步骤1: 数据准备
load_historic_data()# 步骤2: 源荷特性仿射模型构建
def construct_affine_model():# 使用高斯核密度估计和EM算法计算概率分布probability_distributions = calculate_probability_distributions()# 使用Wasserstein距离进行概率分布聚类clustered_distributions = cluster_distributions(probability_distributions)return clustered_distributions# 步骤3: 馈线区块划分
def divide_feeder_blocks():# 计算负荷点间距离矩阵distance_matrix = calculate_distance_matrix()# 使用A*算法计算路径paths = calculate_paths()# 构建功率特性匹配度矩阵matching_matrix = construct_matching_matrix()# 划分馈线区块feeder_blocks = divide_feeder_blocks(distance_matrix, matching_matrix)return feeder_blocks# 步骤4: PIRV计算
def calculate_PIRV():# 量化灵活性资源与电力不平衡风险的关系pirv_values = quantify_risk_relationship()return pirv_values# 步骤5: 配电网双层协同规划模型求解
def solve_planning_model(feeder_blocks, pirv_values):# 上层规划模型:最小化投资费用investment_cost = minimize_investment_cost(feeder_blocks)# 下层优化运行模型:最小化运行成本和风险成本operation_cost = minimize_operation_cost_and_risk(pirv_values)return investment_cost, operation_cost# 步骤6: 模型求解
def solve_model():clustered_distributions = construct_affine_model()feeder_blocks = divide_feeder_blocks()pirv_values = calculate_PIRV()investment_cost, operation_cost = solve_planning_model(feeder_blocks, pirv_values)return investment_cost, operation_cost# 步骤7: 结果分析
def analyze_results(investment_cost, operation_cost):# 对比不同规划方法的成本和性能指标comparison_results = compare_planning_methods(investment_cost, operation_cost)return comparison_results# 主程序
if __name__ == "__main__":investment_cost, operation_cost = solve_model()analysis_results = analyze_results(investment_cost, operation_cost)print(analysis_results)

请注意,上述伪代码仅为程序逻辑的高层次描述,并不包含具体的数学模型和算法实现细节。实际编程时,需要根据论文中提供的数学公式和算法步骤,使用适当的编程语言(如Python、MATLAB等)和优化工具箱(如CPLEX、Gurobi等)来实现具体的功能。此外,还需要根据实际的仿真平台和环境进行相应的调整。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及电力不平衡风险的配电网分区协同规划》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047747

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

10个Python自动化办公的脚本分享

《10个Python自动化办公的脚本分享》在日常办公中,我们常常会被繁琐、重复的任务占据大量时间,本文为大家分享了10个实用的Python自动化办公案例及源码,希望对大家有所帮助... 目录1. 批量处理 Excel 文件2. 自动发送邮件3. 批量重命名文件4. 数据清洗5. 生成 PPT6. 自动化测试

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

10个Python Excel自动化脚本分享

《10个PythonExcel自动化脚本分享》在数据处理和分析的过程中,Excel文件是我们日常工作中常见的格式,本文将分享10个实用的Excel自动化脚本,希望可以帮助大家更轻松地掌握这些技能... 目录1. Excel单元格批量填充2. 设置行高与列宽3. 根据条件删除行4. 创建新的Excel工作表5

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创