【网络安全】【深度学习】【入侵检测】SDN模拟网络入侵攻击并检测,实时检测,深度学习

本文主要是介绍【网络安全】【深度学习】【入侵检测】SDN模拟网络入侵攻击并检测,实时检测,深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. 前言
    • 2. Mininet 和 Ryu 的区别
      • 2.1 Mininet
      • 2.2 Ryu
      • 2.3 总结
    • 3. 模拟攻击
      • 3.1 环境准备
      • 3.2 创建 Mininet 网络拓扑
      • 3.2 启动 Ryu 控制器
      • 3.3 模拟网络攻击
      • 3.4 捕获流量
    • 4. 实时异常检测
      • 4.1 在 Ryu 控制器中
      • 4.2 在 h2 机器上的实验结果
      • 4.3 深度学习模型部署上h2机器
    • 帮助、咨询

1. 前言

做了很多入侵检测的深度学习模型:

【深度学习】Transformer分类器,CICIDS2017,入侵检测,随机森林、RFE、全连接神经网络

https://qq742971636.blog.csdn.net/article/details/137994375

https://qq742971636.blog.csdn.net/article/details/137873472

有时候有的同学想部署到环境中,模拟攻击,来验证一下模型行不行,我也来试试。
使用 Mininet 模拟网络环境,使用 Ryu 作为 SDN 控制器来管理模拟网络中的设备和流量。
部署深度学习模型在其中做实时检测。

2. Mininet 和 Ryu 的区别

Mininet 和 Ryu 是两个不同的工具,分别用于不同的网络虚拟化和软件定义网络 (SDN) 任务。以下是它们的主要区别:

2.1 Mininet

  1. 功能: Mininet 是一个网络仿真器,用于创建和测试虚拟网络拓扑。它允许用户在单台计算机上模拟完整的网络,包括主机、交换机、链路等。
  2. 用例: Mininet 常用于研究和教学,帮助用户快速构建和测试复杂的网络环境,而无需实际硬件。它也用于开发和调试网络应用和协议。
  3. 实现: Mininet 使用 Linux 容器 (如 Network Namespaces 和 Open vSwitch) 来创建虚拟网络环境。用户可以通过 Python 脚本定义网络拓扑。
  4. 交互: 用户可以使用 Mininet 的命令行接口 (CLI) 或 Python API 来创建和操作网络拓扑。

2.2 Ryu

  1. 功能: Ryu 是一个开源的 SDN 控制器框架,用于开发和管理 SDN 控制器。它提供了用于编写控制平面应用程序的工具和库。
  2. 用例: Ryu 用于实现 SDN 控制器,以管理和控制网络设备的行为。它支持 OpenFlow 协议,可以与支持 OpenFlow 的交换机进行通信。
  3. 实现: Ryu 是用 Python 编写的,并且提供了丰富的 API 和库,便于开发者编写自定义的网络控制逻辑和应用。
  4. 交互: 开发者使用 Ryu 来编写 SDN 应用程序,通过 Ryu 控制器与网络设备进行通信和管理。

2.3 总结

  • Mininet: 主要用于创建和模拟虚拟网络拓扑,适合于网络实验和研究。
  • Ryu: 主要用于开发和运行 SDN 控制器,用于管理和控制网络设备。

这两个工具通常可以结合使用:使用 Mininet 模拟网络环境,使用 Ryu 作为 SDN 控制器来管理模拟网络中的设备和流量。

3. 模拟攻击

Mininet 可以结合 SDN(软件定义网络)控制器来模拟网络攻击。这种组合允许您创建一个虚拟网络环境,在其中可以通过 SDN 控制器动态管理和监控网络流量,同时生成和检测网络攻击。以下是一个详细的示例流程,展示如何使用 Mininet 和 SDN 控制器(例如 Ryu)来模拟网络攻击并检测它们。

3.1 环境准备

Ubuntu22的VM虚拟机。

Python3.8才行,看这里教程使用Python3.8虚拟环境:https://qq742971636.blog.csdn.net/article/details/139566288

  1. 安装 Mininet:
    在 Ubuntu 上,您可以通过以下命令安装 Mininet:

    sudo apt-get updatesudo apt-get install mininet
    pip install mininet # 虚拟环境python3.8中安装
  2. 安装 Ryu:
    Ryu 是一个开源的 SDN 控制器,可以通过 pip 安装:

    sudo apt-get install python3-pip
    sudo apt install gcc libffi-dev libssl-dev libxml2-dev libxslt1-dev zlib1g-dev -y
    pip3 install eventlet==0.30.2 ryu==4.34
    
  3. 安装 scapy 和 tcpdump:
    scapy 是一个用于生成和处理网络包的 Python 库,而 tcpdump 是一个流行的网络包捕获工具:

    sudo apt-get install python3-scapy tcpdump
    pip3 install scapy -i https://pypi.tuna.tsinghua.edu.cn/simple
    

3.2 创建 Mininet 网络拓扑

创建一个简单的 Mininet 网络拓扑,并启动 Ryu 控制器:

from mininet.net import Mininet
from mininet.node import RemoteController
from mininet.cli import CLI
from mininet.log import setLogLeveldef simpleTopo():net = Mininet(controller=RemoteController)print("*** Creating nodes")h1 = net.addHost('h1')h2 = net.addHost('h2')s1 = net.addSwitch('s1')c0 = net.addController('c0', controller=RemoteController, ip='127.0.0.1', port=6633)print("*** Creating links")net.addLink(h1, s1)net.addLink(h2, s1)print("*** Starting network")net.start()print("*** Running CLI")CLI(net)print("*** Stopping network")net.stop()if __name__ == '__main__':setLogLevel('info')simpleTopo()

这个代码创建了一个简单的 Mininet 拓扑,并使用一个远程 SDN 控制器来管理网络。以下是代码的详细说明以及对应的拓扑图。

  1. 创建 Mininet 网络:

    • Mininet(controller=RemoteController):创建一个 Mininet 网络,并指定使用远程控制器。
  2. 创建节点:

    • h1 = net.addHost('h1'):添加主机 h1。
    • h2 = net.addHost('h2'):添加主机 h2。
    • s1 = net.addSwitch('s1'):添加交换机 s1。
    • c0 = net.addController('c0', controller=RemoteController, ip='127.0.0.1', port=6633):添加一个远程控制器 c0,控制器运行在本地机器上(IP 地址为 127.0.0.1),使用端口 6633。
  3. 创建链接:

    • net.addLink(h1, s1):将主机 h1 连接到交换机 s1。
    • net.addLink(h2, s1):将主机 h2 连接到交换机 s1。
  4. 启动网络:

    • net.start():启动 Mininet 网络。
  5. 运行命令行界面 (CLI):

    • CLI(net):启动 Mininet 的命令行界面,可以在其中输入命令来管理网络。
  6. 停止网络:

    • net.stop():停止 Mininet 网络。

拓扑图

以下是这个代码创建的网络拓扑图:

 +--------+      +--------+|  h1    |------|  s1    |------|  h2    |+--------+      +--------+      +--------+||+---------+|   c0    |  (Remote SDN Controller)+---------+
  • h1h2 是两台主机。
  • s1 是一个交换机。
  • c0 是一个远程 SDN 控制器,管理交换机 s1

在这个拓扑中,交换机 s1 由远程控制器 c0 管理,主机 h1h2 通过交换机 s1 进行通信。这个简单的拓扑结构可以用于模拟和测试网络配置、流量管理和攻击检测等任务。

保存上述代码为 simple_topo.py,并使用以下命令运行:

sudo python3 simple_topo.py

启动后得到cli端:
在这里插入图片描述

3.2 启动 Ryu 控制器

创建一个简单的 Ryu 控制器脚本,例如 simple_switch.py,它实现一个基本的交换机功能:

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernetclass SimpleSwitch13(app_manager.RyuApp):OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]def __init__(self, *args, **kwargs):super(SimpleSwitch13, self).__init__(*args, **kwargs)self.mac_to_port = {}@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)def switch_features_handler(self, ev):datapath = ev.msg.datapathofproto = datapath.ofprotoparser = datapath.ofproto_parsermatch = parser.OFPMatch()actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]self.add_flow(datapath, 0, match, actions)def add_flow(self, datapath, priority, match, actions, buffer_id=None):ofproto = datapath.ofprotoparser = datapath.ofproto_parserinst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]if buffer_id:mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,priority=priority, match=match,instructions=inst)else:mod = parser.OFPFlowMod(datapath=datapath, priority=priority,match=match, instructions=inst)datapath.send_msg(mod)@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)def _packet_in_handler(self, ev):msg = ev.msgdatapath = msg.datapathofproto = datapath.ofprotoparser = datapath.ofproto_parserin_port = msg.match['in_port']pkt = packet.Packet(msg.data)eth = pkt.get_protocols(ethernet.ethernet)[0]dst = eth.dstsrc = eth.srcdpid = datapath.idself.mac_to_port.setdefault(dpid, {})self.mac_to_port[dpid][src] = in_portif dst in self.mac_to_port[dpid]:out_port = self.mac_to_port[dpid][dst]else:out_port = ofproto.OFPP_FLOODactions = [parser.OFPActionOutput(out_port)]if out_port != ofproto.OFPP_FLOOD:match = parser.OFPMatch(in_port=in_port, eth_dst=dst)self.add_flow(datapath, 1, match, actions)data = Noneif msg.buffer_id == ofproto.OFP_NO_BUFFER:data = msg.dataout = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,in_port=in_port, actions=actions, data=data)datapath.send_msg(out)

保存上述代码为 simple_switch.py,并使用以下命令运行:

ryu-manager simple_switch.py

这个 Ryu 控制器应用程序实现了一个基本的学习交换机功能。当交换机收到一个未知目标 MAC 地址的数据包时,会将该数据包发送给控制器。控制器会首先检查已知的 MAC 地址与端口的映射关系。如果目标 MAC 地址已知,控制器会将数据包转发到对应的端口;如果目标 MAC 地址未知,控制器会将数据包泛洪到所有端口,确保目标主机能够收到数据包并回应。通过这种方式,交换机逐渐学习并建立起网络中各个设备的 MAC 地址与端口的映射关系,从而优化后续的数据包转发过程。

启动成功这样:

在这里插入图片描述

3.3 模拟网络攻击

安装xterm:

sudo apt-get install xterm

进入h1机器:

mininet> xterm h1

可以看到:
在这里插入图片描述

在 Mininet CLI 中,使用 h1 主机对 h2 主机进行攻击。例如,使用 scapy 生成 SYN Flood 攻击:

python3.8 -c "
from scapy.all import *
target_ip = '10.0.0.2'
target_port = 80
while True:send(IP(dst=target_ip)/TCP(dport=target_port,flags='S'),verbose=0)
"

3.4 捕获流量

进入h2机器:

mininet> xterm h2

h2 主机上捕获流量,并保存为 pcap 文件:

tcpdump -w attack_traffic.pcap

在这里插入图片描述
可以用这个指令看一下pcap文件大概内容:

tcpdump -vr attack_traffic.pcap

4. 实时异常检测

我开发了一个基于随机森林的入侵检测模型,利用了CICIDS数据进行训练。现在,我想要实现在 h2 机器上进行实时流量包检测,并利用模型推断出其中的异常流量。

4.1 在 Ryu 控制器中

一种方法是在 Ryu 控制器中添加代码以监测流量模式。举例来说,你可以创建一个模块来检测异常流量,并在检测到攻击时采取相应措施。虽然这种监测方法是可行的,但我更倾向于寻找其他方案。

4.2 在 h2 机器上的实验结果

在之前的实验中,我模拟了 h1 机器向 h2 机器发送 SYN 泛洪攻击。结果显示,h2 机器成功接收到了这些攻击流量。通过使用抓包工具执行指令 tcpdump -w attack_traffic.pcap,我捕获了相关信息。

让我们回顾一下网络拓扑图:

 +--------+      +--------+|  h1    |------|  s1    |------|  h2    |+--------+      +--------+      +--------+||+---------+|   c0    |  (远程 SDN 控制器)+---------+

在 h2 机器上执行以下命令查看网络接口:

ifconfig

结果显示网络接口为 h2-eth0

h2-eth0 网络接口

接着,我编写了以下 Python 代码来抓取 h2 机器的流量,并对其进行进一步的检测与分析:

from scapy.all import *def packet_callback(packet):if packet.haslayer(IP) and packet.haslayer(TCP):src_ip = packet[IP].srcdst_ip = packet[IP].dstsrc_port = packet[TCP].sportdst_port = packet[TCP].dportflags = packet[TCP].flagsprint(f"IP: {src_ip} -> {dst_ip}, TCP Port: {src_port} -> {dst_port}, Flags: {flags}")sniff(iface="h2-eth0", prn=packet_callback, store=0)

通过这段代码,我成功捕获到了 SYN 攻击的流量:

捕获的 SYN 攻击流量

4.3 深度学习模型部署上h2机器

这里嘛,有缘再见了。

帮助、咨询

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

这篇关于【网络安全】【深度学习】【入侵检测】SDN模拟网络入侵攻击并检测,实时检测,深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047249

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx