本文主要是介绍PyTorch学习5:Logistic回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 前言
- 一、分类问题简介
- 二、示例
- 1.示例步骤
- 2.示例代码
- 总结
前言
介绍利用PyTorch实现Logistic回归的分类问题
一、分类问题简介
分类问题的输出为属于每一个类别的概率,概率值最大的即为所属类别。最常见的Sigmoid函数:Logistic函数。
二、示例
1.示例步骤
1.构建模型 class LogisticRegressionModel(torch.nn.Module):
2.定义损失函数和优化器
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
3.训练过程
2.示例代码
代码如下(示例):
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])# design model using class
class LogisticRegressionModel(torch.nn.Module):def __init__(self):super(LogisticRegressionModel, self).__init__()self.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = F.sigmoid(self.linear(x))return y_predmodel = LogisticRegressionModel()# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10000):y_pred = model(x_data)loss = criterion(y_pred, y_data)print(epoch, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()epoch_list.append(epoch)loss_list.append(loss.item())print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
得到如下结果:
总结
PyTorch学习5:Logistic回归
这篇关于PyTorch学习5:Logistic回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!