算法导论实战(六)(算法导论习题三十四、三十五章)

2024-06-09 23:28

本文主要是介绍算法导论实战(六)(算法导论习题三十四、三十五章),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌈 个人主页:十二月的猫-CSDN博客
🔥 系列专栏: 🏀算法启示录

💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 

前言

算法导论的知识点学习将持续性更新在算法启示录_十二月的猫的博客-CSDN博客,欢迎大家订阅呀(反正是免费的哦~~)

实战篇也将在专栏上持续更新,主要目的是强化对理论的学习(题目来源:山东大学孔凡玉老师推荐)

目录

前言

第三十四章

34.1-4

34.5-1

34.5-5

第三十五章

35.1-4

35.2-3

总结


第三十四章

34.1-4

问题描述:

练习 16. 2-2 中曾要求读者给出的 0-1 背包问题的“动态规划算法“,它是一个多项式时间的算法吗?解释你的答案。

问题分析:

首先回忆:0-1背包问题的动态规划算法是什么?

0-1背包动态规划算法:

0-1bag(w,v,n,m) //n表示物品数量,m表示背包最大重量let d(i,j) be a Two-dimensional arraysfor i=0 to nd(i,0)=0for j=1 to md(0,j)=0for i =1 to nfor j=1 to mif(j>w(i))d(i,j)=max(d(i-1,j),d(i-1,j-w(i))+v(i))elsed(i,j)=d(i-1,j)

分析算法我们不难知道算法的时间复杂度为O(nm),其中n为物品最大数量,m为背包重量上限 


问题本质就是让我们思考O(nm)这个时间复杂度是不是多项式时间的

时间复杂度分为:编码时间复杂度、非编码时间复杂度

很多算法在非编码情况下时间复杂度为多项式时间的,但是在编码下就是非多项式时间 

编码时间复杂度更贴和计算机实际运行的情况 

问题求解:

这不是一个多项式时间的算法。考虑问题的编码。通过给出每个物品的索引、价值和重量的二进制表示,可以进行多项式编码,这些被表示为长度为a = Ω(n)的二进制字符串(每个物品独立需要一串编码,不能用两个位表示四个物品)。我们在多项式时间内对W进行编码,这将有长度为Θ(log W) 的编码(能用两位表示四个重量)。这个长度为a + b的问题的解的时间为Θ(nW) = Θ(a · 2^b)。因此,该算法实际上是指数级的。

注:本题实际上是问算法实际运行的时间复杂度

34.5-1

问题描述:

子图同构问题取两个无向图 G1、G2, 要回答 G1 是否与 G2 的一个子图同构这一问题。 证明:子图同构问题是 NP 完全的。(本题就是证明子图同构问题是NP完全问题

问题分析:

证明L问题是NP完全问题的步骤:

  1. 证明L∈NP
  2. 选取一个已知的NP完全问题L’
  3. 描述一个归约函数f(x)能够把L‘归约到L
  4. 证明归约函数f的归约是多项式时间的
  5. 当且仅当L‘有解时L有解

总的思路:假设L’有解将每个实例归约成L,此时L也有解;但是L‘是NPC问题,所以L也是NPC问题无解

问题求解:

1、假如我们得到了G1、G2以及其对应的解——G2的子图G2‘与G1同构。此时我们只需要遍历G2’中的点和每一个与点相连的边,同时检查G1中是够有对应的点即可验证。这个验证的时间复杂度是O(EV)(其中E为G2‘的边集,V为G1的点集),所以是多项式时间。但是假如不知道G2哪个子图与G1同构,要去寻找的话,由于G2的子图有2^n个,所以寻找的时间显然不是多项式时间

2、选择团问题作为已知的NPC问题,接下去思考如何把团问题归约到子图同构问题上

3、假如现在我们有一个有解团问题<G,k>,即G中存在一个k规模的团(即有k个点的完全子图),记这个完全子图为Gk。此时我们构造一个G2,令G2是和Gk一样规模的完全子图。那么我们将G和G2放到子图同构中不难证明,G一定有子图Gk与G2同构

4、假如G有子图Gk与G2同构,那么至少G中会存在规模为k的团,即L语言在NPC问题L’中一定有对应的解。同时团问题有解时由3可知子图同构问题也一定有解。所以当且仅当关系证明完毕!

5、由于归约算法中,我们仅仅构造一个规模为k的完全图G2,所以这个归约算法是多项式时间内可以完成的

34.5-5

问题描述:

给定一个整数集合S,求集合S的一个划分S1和S2(即:S=S1∪S2且S1∩S2=Φ),使得S1中的元素之和等于S2中的元素之和(本题就是证明集合划分问题是NPC问题)

问题分析:

证明L问题是NP完全问题的步骤:

  1. 证明L∈NP
  2. 选取一个已知的NP完全问题L’
  3. 描述一个归约函数f(x)能够把L‘归约到L
  4. 证明归约函数f的归约是多项式时间的
  5. 当且仅当L‘有解时L有解

总的思路:假设L’有解将每个实例归约成L,此时L也有解;但是L‘是NPC问题,所以L也是NPC问题无解

问题求解:

1、假如给定一个集合S的划分S1和S2,那么分别对S1和S2的元素求和并比较,因此可以在多项式时间验证这个集合划分的正确性。同时如果并没有给这个S的划分,那么S1和S2的划分个数都有2^n个,所以寻找S1、S2算法的时间复杂度肯定不是多项式时间的

2、选择子集和求和问题作为已知NPC问题

3、假如存在一个集合U,已知其中的元素xi、xj,....,等之和为t,t为提前已经设定好的量。那么我们取这个集合U,令U’=U 并 {U-2t},此时U‘中就存在几个可拆分的集合对象。这时,可以确定新集合U‘中的集合元素可以拆分为两个U-t。因为只要将集合{U-2t}中的t挪动到U中即可。而t已知为xi、xj,....,等元素的和,所以是可以挪动的。证毕!

4、归约算法仅仅涉及有限集合的并以及拆操作,所以整体的归约时间必然是多项式的

5、当新集合U'中元素可以拆分为两个相等的元素时,我们可以令这两个相等元素为U-t。那么重新拆分组合这两个元素,可以得到集合U,并且其中有元素求和为t。也就是说此时集合U的子集和问题必然存在解。

第三十五章

35.1-4

问题描述:

给出一个有效的贪心算法,使其能够在线性时间内找出一棵树的最优顶点覆盖。

问题分析:

已知顶点覆盖算法是NPC难度的,题目要我们找可行的线性时间算法,本质就是让我们去使用近似算法找最优顶点覆盖

 所谓贪心算法实现就是算法导论中的方法

问题求解:

APPROX-VERTEX-COVER(G)C=ØE'=G.Ewhile(E'!=Ø)let (u,v) be a arbitrary edge of E'C=C ∪ (u,v)remove from E' every edge incident on either u or vreturn C

 该算法是一个多项式时间的2近似算法

问题深究: 

下面给出证明,说明为什么这个算法是多项式时间的2近似算法

 证:

定义C:为算法实际找出的顶点覆盖;C*:为图G最优顶点覆盖;A为算法找出的边的集合

由于每找到一个边(u,v)则把与u或v连接的边删除,所以A集合中没有两个边存在共同的顶点,即所有边都是不相连的。因此,想要覆盖这些边至少需要边个数的顶点,即有:

\left | C^* \right |>=\left | A \right |

由由于A的边并不相交,所以并不存在一个点连接两个边的情况,每个边的两个端点都是不相同的。因此有:

\left | C \right |=2\left | A \right | 

结合上面两个式子,我们可以得到:

 \left | C \right |=2\left | A \right |<=2\left | C^* \right |

即该算法是多项式时间上的2近似算法 

35.2-3

问题描述:

考虑下述用于构造近似旅行商旅行路线(代价函数满足三角不等式)的最近点启发式:从只包含任意选择的某一顶点的平凡回路开始,在每一步中,找出一个顶点 u, 它不在回路中,但到回路上任何顶点之间的距离最短。假设回路上距离u最近的顶点为 v, 则将u插入到v之后,从而对回路加以扩展。重复这一过程,直到所有顶点都在回路上为止。 证明:这一启发式方法返回的旅行路线总代价不超过最优旅行路线代价的2倍。

 问题分析:

 证明近似算法与最优算法代价的近似比:

1、确定近似算法产生的结果;

2、确定最优算法产生的结果;

3、找到两者中间的联系桥点

4、通过桥点来判断近似算法和最优算法的近似比

问题求解: 

按照这个思路来求解近似算法的近似比 :

1、确定近似算法产生的结果:每次选择一个点,将点插入到原本的回路中间,从而完成回路的拓展

2、最优算法产生回路的方式:回忆通过最小生成树来确定旅行路线的方法,可以知道生成最优旅行路线我们是每次选择一个点然后将该点加入已知回路(注意是加入不是插入

3、 顶点覆盖近似算法每次找的是边,所以中点桥点就是|A|;旅行商问题的最小生成树近似算法依靠生成树来解决问题,所以中间桥点就是c(T),即生成树的权值和。本题不需要一个特定的桥点,因为近似结果和最优结果内部就存在桥点可以利用

4、假设回路中已经存在vi,vi+1,现在想要插入ui。利用近似算法每次插入一个点,新增的值:

c(u_i,v_i)+c(u_i,v_{i+1})-c(v_i,v_{i+1})

根据三角形理论可以知道下面不等式:

 c(u_i,v_{i+1})<=c(u_i,v_{i})+c(v_i,v_{i+1})

将第二个不等式代入第一个式子中有:

 c(u_i,v_i)+c(u_i,v_{i+1})-c(v_i,v_{i+1})<=2c(u_i,v_{i})

 而最优结果每次加入点新增的值为(因为已知ui到vi的距离是最短的):

c(u_i,v_i)

 因此可以证明,每次新增的值近似算法是最优算法新增值的两倍,所以从总的代价上看,近似算法最终耗费也是最优算法最终耗费的两倍。证毕!

总结

本文到这里就结束啦~~

本篇文章的撰写花了本喵三个多小时

如果仍有不够,希望大家多多包涵~~

如果觉得对你有帮助,辛苦友友点个赞哦~

知识来源:《算法导论》课后习题、山东大学孔凡玉老师ppt。不要用于商业用途转发~

这篇关于算法导论实战(六)(算法导论习题三十四、三十五章)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046600

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig