本文主要是介绍【K8s源码分析(三)】-K8s调度器调度周期介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
本文首发在个人博客上,欢迎来踩!
本次分析参考的K8s版本是v1.27.0。
K8s的整体调度框架如下图所示。
调度框架顶层函数
K8s调度器调度的核心函数schedulerone
在pkg/scheduler/schedule_one.go:62
,如下,这里将一些解释写在了注释里
// scheduleOne does the entire scheduling workflow for a single pod. It is serialized on the scheduling algorithm's host fitting.
func (sched *Scheduler) scheduleOne(ctx context.Context) {// 获取调度队列中的下一个 Pod 信息podInfo := sched.NextPod()// 如果 podInfo 或者其包含的 Pod 为 nil,说明调度队列关闭或者没有 Pod 需要调度,直接返回if podInfo == nil || podInfo.Pod == nil {return}// 获取 Pod 对象pod := podInfo.Pod// 为当前 Pod 选择一个调度框架(scheduler framework)fwk, err := sched.frameworkForPod(pod)if err != nil {// 这种情况不应该发生,因为我们只接受那些指定了匹配调度器名称的 Pod 进行调度klog.ErrorS(err, "Error occurred")return}// 如果跳过调度,则直接返回if sched.skipPodSchedule(fwk, pod) {return}// 记录尝试调度 Pod 的日志klog.V(3).InfoS("Attempting to schedule pod", "pod", klog.KObj(pod))// 开始计时,尝试为 Pod 找到合适的宿主机start := time.Now()// 初始化调度周期状态state := framework.NewCycleState()// 设置是否记录插件指标的随机概率state.SetRecordPluginMetrics(rand.Intn(100) < pluginMetricsSamplePercent)// 初始化一个空的 podsToActivate 结构,这个结构将由插件填充或者保持为空podsToActivate := framework.NewPodsToActivate()// 将 podsToActivate 写入状态中state.Write(framework.PodsToActivateKey, podsToActivate)// 创建一个新的带有取消功能的上下文,用于调度周期schedulingCycleCtx, cancel := context.WithCancel(ctx)defer cancel()// 执行调度周期,尝试为 Pod 找到合适的宿主机scheduleResult, assumedPodInfo, status := sched.schedulingCycle(schedulingCycleCtx, state, fwk, podInfo, start, podsToActivate)// 如果调度失败,则调用失败处理器if !status.IsSuccess() {sched.FailureHandler(schedulingCycleCtx, fwk, assumedPodInfo, status, scheduleResult.nominatingInfo, start)return}// 异步绑定 Pod 到其宿主机(可以这样做是因为上面的假设步骤)go func() {// 创建一个新的带有取消功能的上下文,用于绑定周期bindingCycleCtx, cancel := context.WithCancel(ctx)defer cancel()// 增加绑定阶段的 goroutine 指标metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Inc()defer metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Dec()metrics.Goroutines.WithLabelValues(metrics.Binding).Inc()defer metrics.Goroutines.WithLabelValues(metrics.Binding).Dec()// 执行绑定周期,尝试将 Pod 绑定到宿主机status := sched.bindingCycle(bindingCycleCtx, state, fwk, scheduleResult, assumedPodInfo, start, podsToActivate)// 如果绑定失败,则处理绑定周期错误if !status.IsSuccess() {sched.handleBindingCycleError(bindingCycleCtx, state, fwk, assumedPodInfo, start, scheduleResult, status)}}()
}
这段代码的主要功能是:
- 从调度队列中获取下一个要调度的 Pod。
- 为 Pod 选择一个调度框架。
- 如果配置允许,跳过调度。
- 记录日志并开始调度周期。
- 如果调度成功,异步地尝试将 Pod 绑定到选定的宿主机。
- 如果调度或绑定失败,执行相应的错误处理逻辑。
此处也指明了两个周期,分别为调度周期schedulingCycle
和绑定周期bindingCycle
,绑定周期会在后面一节进行介绍,这里主要关注schedulingCycle
。
查看关键的schedulingCycle
函数,在pkg/scheduler/schedule_one.go:120
中,补充了部分注释。
// schedulingCycle tries to schedule a single Pod.
func (sched *Scheduler) schedulingCycle(ctx context.Context, // 调度上下文state *framework.CycleState, // 调度周期状态fwk framework.Framework, // 调度框架podInfo *framework.QueuedPodInfo, // 待调度的 Pod 信息start time.Time, // 调度开始时间podsToActivate *framework.PodsToActivate, // 待激活的 Pods
) (ScheduleResult, *framework.QueuedPodInfo, *framework.Status) {// 获取待调度的 Podpod := podInfo.Pod// 调用调度器的 SchedulePod 方法尝试调度 PodscheduleResult, err := sched.SchedulePod(ctx, fwk, state, pod)if err != nil {// 如果没有可用节点,则返回错误状态if err == ErrNoNodesAvailable {status := framework.NewStatus(framework.UnschedulableAndUnresolvable).WithError(err)return ScheduleResult{nominatingInfo: clearNominatedNode}, podInfo, status}// 如果错误是 FitError 类型,则说明 Pod 无法适应任何节点fitError, ok := err.(*framework.FitError)if !ok {klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))return ScheduleResult{nominatingInfo: clearNominatedNode}, podInfo, framework.AsStatus(err)}// 如果没有 PostFilter 插件,则不执行抢占if !fwk.HasPostFilterPlugins() {klog.V(3).InfoS("No PostFilter plugins are registered, so no preemption will be performed")return ScheduleResult{}, podInfo, framework.NewStatus(framework.Unschedulable).WithError(err)}// 运行 PostFilter 插件,尝试使 Pod 在未来的调度周期中可调度result, status := fwk.RunPostFilterPlugins(ctx, state, pod, fitError.Diagnosis.NodeToStatusMap)msg := status.Message()fitError.Diagnosis.PostFilterMsg = msgif status.Code() == framework.Error {klog.ErrorS(nil, "Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", msg)} else {klog.V(5).InfoS("Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", msg)}// 获取 PostFilter 插件返回的 NominatingInfovar nominatingInfo *framework.NominatingInfoif result != nil {nominatingInfo = result.NominatingInfo}return ScheduleResult{nominatingInfo: nominatingInfo}, podInfo, framework.NewStatus(framework.Unschedulable).WithError(err)}// 计算并记录调度算法的延迟metrics.SchedulingAlgorithmLatency.Observe(metrics.SinceInSeconds(start))// 假设 Pod 已经在给定节点上运行,这样子就不用等它实际绑定就可以执行后续的操作了assumedPodInfo := podInfo.DeepCopy()assumedPod := assumedPodInfo.Pod// 假设操作,设置 Pod 的 NodeName 为调度结果推荐的宿主机err = sched.assume(assumedPod, scheduleResult.SuggestedHost)if err != nil {// 如果假设操作失败,这可能是重试逻辑中的一个 BUG// 报告错误以便重新调度 Podreturn ScheduleResult{nominatingInfo: clearNominatedNode},assumedPodInfo,framework.AsStatus(err)}// 运行预留插件的 Reserve 方法if sts := fwk.RunReservePluginsReserve(ctx, state, assumedPod, scheduleResult.SuggestedHost); !sts.IsSuccess() {// 如果预留失败,触发取消预留以清理与预留 Pod 相关的资源fwk.RunReservePluginsUnreserve(ctx, state, assumedPod, scheduleResult.SuggestedHost)if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")}return ScheduleResult{nominatingInfo: clearNominatedNode},assumedPodInfo,sts}// 运行 "permit" 插件runPermitStatus := fwk.RunPermitPlugins(ctx, state, assumedPod, scheduleResult.SuggestedHost)if !runPermitStatus.IsWait() && !runPermitStatus.IsSuccess() {// 如果许可检查失败,触发取消预留以清理与预留 Pod 相关的资源fwk.RunReservePluginsUnreserve(ctx, state, assumedPod, scheduleResult.SuggestedHost)if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")}return ScheduleResult{nominatingInfo: clearNominatedNode},assumedPodInfo,runPermitStatus}// 成功调度周期结束后,查看是否有必要设置一些pod为可调度的状态if len(podsToActivate.Map) != 0 {sched.SchedulingQueue.Activate(podsToActivate.Map)// 激活后清空条目podsToActivate.Map = make(map[string]*v1.Pod)}// 返回调度结果return scheduleResult, assumedPodInfo, nil
}
主要流程包括:
- 尝试调度 Pod,并处理可能出现的错误。
- 如果调度失败,根据错误类型执行不同的逻辑,如处理节点不可用或 Pod 不适应任何节点的情况。
- 如果调度成功,记录调度算法的延迟,并提前假设 Pod 已经在推荐的节点上运行。
- 运行预留插件的 Reserve 方法,并处理预留成功或失败的情况。
- 运行抢占插件,并根据结果进行相应的处理。
- 如果有待转为active的 Pods,执行激活操作。
- 返回调度结果。
一般调度
这里最关键的是SchedulePod
函数,在pkg/scheduler/schedule_one.go:334
中
// schedulePod tries to schedule the given pod to one of the nodes in the node list.
// If it succeeds, it will return the name of the node.
// If it fails, it will return a FitError with reasons.
func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {trace := utiltrace.New("Scheduling", utiltrace.Field{Key: "namespace", Value: pod.Namespace}, utiltrace.Field{Key: "name", Value: pod.Name})defer trace.LogIfLong(100 * time.Millisecond)if err := sched.Cache.UpdateSnapshot(sched.nodeInfoSnapshot); err != nil {return result, err}trace.Step("Snapshotting scheduler cache and node infos done")if sched.nodeInfoSnapshot.NumNodes() == 0 {return result, ErrNoNodesAvailable}feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)if err != nil {return result, err}trace.Step("Computing predicates done")if len(feasibleNodes) == 0 {return result, &framework.FitError{Pod: pod,NumAllNodes: sched.nodeInfoSnapshot.NumNodes(),Diagnosis: diagnosis,}}// When only one node after predicate, just use it.if len(feasibleNodes) == 1 {return ScheduleResult{SuggestedHost: feasibleNodes[0].Name,EvaluatedNodes: 1 + len(diagnosis.NodeToStatusMap),FeasibleNodes: 1,}, nil}priorityList, err := prioritizeNodes(ctx, sched.Extenders, fwk, state, pod, feasibleNodes)if err != nil {return result, err}host, err := selectHost(priorityList)trace.Step("Prioritizing done")return ScheduleResult{SuggestedHost: host,EvaluatedNodes: len(feasibleNodes) + len(diagnosis.NodeToStatusMap),FeasibleNodes: len(feasibleNodes),}, err
}
在这里我们就能具体的看到predicates筛选过程和Prioritizing打分过程,整体的逻辑也比较简单,首先是筛选出合适的node,如果只有一个node了,那么就直接返回这个node,如果有多个就进行打分,然后选择评分最高的node返回回去。
筛选过程
然后我们查看predicates筛选过程,其代码在pkg/scheduler/schedule_one.go:387
中,如下,补充了一些注释
// Filters the nodes to find the ones that fit the pod based on the framework
// filter plugins and filter extenders.
func (sched *Scheduler) findNodesThatFitPod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) ([]*v1.Node, framework.Diagnosis, error) {// 初始化诊断信息,用于记录调度过程中的详细信息diagnosis := framework.Diagnosis{NodeToStatusMap: make(framework.NodeToStatusMap),UnschedulablePlugins: sets.NewString(),}// 获取所有节点的信息allNodes, err := sched.nodeInfoSnapshot.NodeInfos().List()if err != nil {return nil, diagnosis, err}// 运行 "prefilter" 插件preRes, s := fwk.RunPreFilterPlugins(ctx, state, pod)if !s.IsSuccess() {if !s.IsUnschedulable() {return nil, diagnosis, s.AsError()}// 如果 PreFilter 插件返回的状态是不可调度的,记录相关信息msg := s.Message()diagnosis.PreFilterMsg = msgklog.V(5).InfoS("Status after running PreFilter plugins for pod", "pod", klog.KObj(pod), "status", msg)// 如果有插件失败,记录失败的插件名称if s.FailedPlugin() != "" {diagnosis.UnschedulablePlugins.Insert(s.FailedPlugin())}return nil, diagnosis, nil}// 如果 Pod 已经被提名到一个节点上(可能由于之前的抢占操作),// 这个节点很可能是唯一一个合适的节点,所以首先评估这个节点if len(pod.Status.NominatedNodeName) > 0 {feasibleNodes, err := sched.evaluateNominatedNode(ctx, pod, fwk, state, diagnosis)if err != nil {klog.ErrorS(err, "Evaluation failed on nominated node", "pod", klog.KObj(pod), "node", pod.Status.NominatedNodeName)}// 如果提名的节点通过了所有的过滤,调度器可以决定将这个节点分配给 Podif len(feasibleNodes) != 0 {return feasibleNodes, diagnosis, nil}}// 根据 PreFilter 插件的结果,可能需要过滤掉一些节点nodes := allNodesif !preRes.AllNodes() {nodes = make([]*framework.NodeInfo, 0, len(preRes.NodeNames))for n := range preRes.NodeNames {nInfo, err := sched.nodeInfoSnapshot.NodeInfos().Get(n)if err != nil {return nil, diagnosis, err}nodes = append(nodes, nInfo)}}// 寻找通过过滤的节点feasibleNodes, err := sched.findNodesThatPassFilters(ctx, fwk, state, pod, diagnosis, nodes)// 无论是否发生错误,都尝试更新下一次开始搜索节点的索引processedNodes := len(feasibleNodes) + len(diagnosis.NodeToStatusMap)sched.nextStartNodeIndex = (sched.nextStartNodeIndex + processedNodes) % len(nodes)if err != nil {return nil, diagnosis, err}// 检查过滤扩展器以找到更多通过过滤的节点feasibleNodes, err = findNodesThatPassExtenders(sched.Extenders, pod, feasibleNodes, diagnosis.NodeToStatusMap)if err != nil {return nil, diagnosis, err}// 返回所有通过过滤的节点return feasibleNodes, diagnosis, nil
}
这部分首先运行preFilter插件首先进行一些轻量级的检查,然后再运行filter插件进行正式筛选,然后在运行filter拓展插件。
这里我们主要关注filter插件的运行,查看其对应的findNodesThatPassFilters函数,在pkg/scheduler/schedule_one.go:475
中,如下,补充了部分注释
// findNodesThatPassFilters finds the nodes that fit the filter plugins.
func (sched *Scheduler) findNodesThatPassFilters(ctx context.Context, // 调度上下文fwk framework.Framework, // 调度框架state *framework.CycleState, // 调度周期状态pod *v1.Pod, // 待调度的 Poddiagnosis framework.Diagnosis, // 调度诊断信息nodes []*framework.NodeInfo) ([]*v1.Node, error) { // 所有节点信息numAllNodes := len(nodes) // 所有节点的数量// 计算应该找到的可行节点数量numNodesToFind := sched.numFeasibleNodesToFind(fwk.PercentageOfNodesToScore(), int32(numAllNodes))// 创建一个足够大的列表来存储通过过滤的节点,以避免在运行时增长该列表feasibleNodes := make([]*v1.Node, numNodesToFind)// 如果框架没有过滤插件,直接使用所有节点if !fwk.HasFilterPlugins() {for i := range feasibleNodes {// 从上一个调度周期停止的地方开始检查节点feasibleNodes[i] = nodes[(sched.nextStartNodeIndex+i)%numAllNodes].Node()}return feasibleNodes, nil}// 用于并行处理时的错误通道errCh := parallelize.NewErrorChannel()var statusesLock sync.Mutex // 用于保护对诊断信息的并发访问var feasibleNodesLen int32 // 通过过滤的节点数量ctx, cancel := context.WithCancel(ctx) // 创建一个可取消的上下文defer cancel()// 检查每个节点是否通过过滤checkNode := func(i int) {nodeInfo := nodes[(sched.nextStartNodeIndex+i)%numAllNodes] // 获取节点信息status := fwk.RunFilterPluginsWithNominatedPods(ctx, state, pod, nodeInfo) // 运行过滤插件if status.Code() == framework.Error {errCh.SendErrorWithCancel(status.AsError(), cancel) // 发送错误并可能取消整个操作return}if status.IsSuccess() {// 如果节点通过过滤,将其添加到可行节点列表中length := atomic.AddInt32(&feasibleNodesLen, 1)if length > numNodesToFind {cancel() // 如果找到的节点超过了预定数量,取消剩余的检查atomic.AddInt32(&feasibleNodesLen, -1)} else {feasibleNodes[length-1] = nodeInfo.Node()}} else {// 如果节点没有通过过滤,记录其状态statusesLock.Lock()diagnosis.NodeToStatusMap[nodeInfo.Node().Name] = statusdiagnosis.UnschedulablePlugins.Insert(status.FailedPlugin())statusesLock.Unlock()}}// 记录开始检查节点的时间beginCheckNode := time.Now()statusCode := framework.Successdefer func() {// 记录 Filter 扩展点的延迟metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Filter, statusCode.String(), fwk.ProfileName()).Observe(metrics.SinceInSeconds(beginCheckNode))}()// 并行检查所有节点,直到找到预定数量的可行节点或检查完所有节点fwk.Parallelizer().Until(ctx, numAllNodes, checkNode, metrics.Filter)// 截断可行节点列表到实际找到的节点数量feasibleNodes = feasibleNodes[:feasibleNodesLen]if err := errCh.ReceiveError(); err != nil {statusCode = framework.Errorreturn feasibleNodes, err}return feasibleNodes, nil
}
注意到这里首先计算了需要筛选的node的数量,这主要是为了在大规模场景下降低筛选的数量,查看其对应的函数,在pkg/scheduler/schedule_one.go:548
中,如下,补充了部分注释。
// numFeasibleNodesToFind returns the number of feasible nodes that once found, the scheduler stops
// its search for more feasible nodes.
func (sched *Scheduler) numFeasibleNodesToFind(percentageOfNodesToScore *int32, numAllNodes int32) (numNodes int32) {if numAllNodes < minFeasibleNodesToFind {// 如果所有节点的数量小于预设的最小可行节点数,则返回所有节点的数量return numAllNodes}// 使用框架(profile)中设置的百分比,如果没有设置,则使用全局的百分比var percentage int32if percentageOfNodesToScore != nil {percentage = *percentageOfNodesToScore} else {percentage = sched.percentageOfNodesToScore}if percentage == 0 {// 如果没有提供百分比,则使用默认的计算方式percentage = int32(50) - numAllNodes/125if percentage < minFeasibleNodesPercentageToFind {// 确保百分比不低于预设的最小值percentage = minFeasibleNodesPercentageToFind}}// 计算基于总节点数和百分比的节点数numNodes = numAllNodes * percentage / 100if numNodes < minFeasibleNodesToFind {// 如果计算出的节点数小于最小可行节点数,则返回最小值return minFeasibleNodesToFind}// 返回计算出的可行节点数return numNodes
}
然后定义了内部的checkNode函数,其输入是要检查的node 的id相对于sched.nextStartNodeIndex
的偏移。注意这里使用了k8s内部定义的并行函数fwk.Parallelizer().Until,其定义如下,在pkg/scheduler/framework/parallelize/parallelism.go:56
和staging/src/k8s.io/client-go/util/workqueue/parallelizer.go:46
中:
// Until is a wrapper around workqueue.ParallelizeUntil to use in scheduling algorithms.
// A given operation will be a label that is recorded in the goroutine metric.
func (p Parallelizer) Until(ctx context.Context, pieces int, doWorkPiece workqueue.DoWorkPieceFunc, operation string) {goroutinesMetric := metrics.Goroutines.WithLabelValues(operation)withMetrics := func(piece int) {goroutinesMetric.Inc()doWorkPiece(piece)goroutinesMetric.Dec()}workqueue.ParallelizeUntil(ctx, p.parallelism, pieces, withMetrics, workqueue.WithChunkSize(chunkSizeFor(pieces, p.parallelism)))
}
// ParallelizeUntil is a framework that allows for parallelizing N
// independent pieces of work until done or the context is canceled.
func ParallelizeUntil(ctx context.Context, workers, pieces int, doWorkPiece DoWorkPieceFunc, opts ...Options) {if pieces == 0 {return}o := options{}for _, opt := range opts {opt(&o)}chunkSize := o.chunkSizeif chunkSize < 1 {chunkSize = 1}chunks := ceilDiv(pieces, chunkSize)toProcess := make(chan int, chunks)for i := 0; i < chunks; i++ {toProcess <- i}close(toProcess)var stop <-chan struct{}if ctx != nil {stop = ctx.Done()}if chunks < workers {workers = chunks}wg := sync.WaitGroup{}wg.Add(workers)for i := 0; i < workers; i++ {go func() {defer utilruntime.HandleCrash()defer wg.Done()for chunk := range toProcess {start := chunk * chunkSizeend := start + chunkSizeif end > pieces {end = pieces}for p := start; p < end; p++ {select {case <-stop:returndefault:doWorkPiece(p)}}}}()}wg.Wait()
}
checkNode函数内部检查对应的node是否能通过所有filter插件的过滤(RunFilterPluginsWithNominatedPods
)如果通过就将筛选过的node数量+1,并记录相关的值,同时还会检查是否已经筛选到了足够的node,如果足够了,那么就发送取消信号,停止并行进程,不再继续筛选。
对于每个node进行筛选的函数RunFilterPluginsWithNominatedPods
在pkg/scheduler/framework/runtime/framework.go:816
中,如下
func (f *frameworkImpl) RunFilterPluginsWithNominatedPods(ctx context.Context, // 调度上下文state *framework.CycleState, // 当前周期状态pod *v1.Pod, // 待调度的 Podinfo *framework.NodeInfo, // 节点信息
) *framework.Status {var status *framework.StatuspodsAdded := false// We run filters twice in some cases. If the node has greater or equal priority// nominated pods, we run them when those pods are added to PreFilter state and nodeInfo.// If all filters succeed in this pass, we run them again when these// nominated pods are not added. This second pass is necessary because some// filters such as inter-pod affinity may not pass without the nominated pods.// If there are no nominated pods for the node or if the first run of the// filters fail, we don't run the second pass.// We consider only equal or higher priority pods in the first pass, because// those are the current "pod" must yield to them and not take a space opened// for running them. It is ok if the current "pod" take resources freed for// lower priority pods.// Requiring that the new pod is schedulable in both circumstances ensures that// we are making a conservative decision: filters like resources and inter-pod// anti-affinity are more likely to fail when the nominated pods are treated// as running, while filters like pod affinity are more likely to fail when// the nominated pods are treated as not running. We can't just assume the// nominated pods are running because they are not running right now and in fact,// they may end up getting scheduled to a different node.// 我们可能需要两次运行过滤插件。如果节点上有优先级更高或相等的被提名的 Pods,// 我们会在这些 Pods 被添加到 PreFilter 状态和 nodeInfo 时运行它们。// 如果所有过滤插件在这一轮通过,我们会在这些被提名的 Pods 没有被添加的情况下再次运行它们。// 第二轮运行是必要的,因为一些过滤插件(如 Pod 亲和性)可能在没有被提名的 Pods 的情况下无法通过。// 如果节点没有被提名的 Pods 或者第一轮过滤插件失败,我们不会进行第二轮。// 我们只考虑第一轮中优先级相等或更高的 Pods,因为当前的 "pod" 必须为它们让路,而不是占用为它们运行而开放的空间。// 如果当前的 "pod" 占用了为低优先级 Pods 释放的资源,这是可以的。// 要求新的 Pod 在这两种情况下都是可调度的,确保我们做出的是保守的决定:// 像资源和 Pod 反亲和性这样的过滤器在将被提名的 Pods 视为运行时更有可能失败,// 而像 Pod 亲和性这样的过滤器在将被提名的 Pods 视为未运行时更有可能失败。// 我们不能仅仅假设被提名的 Pods 正在运行,因为它们现在并没有运行,事实上,// 它们最终可能会被调度到一个不同的节点上。for i := 0; i < 2; i++ {stateToUse := statenodeInfoToUse := infoif i == 0 {// 第一轮:添加被提名的 Pods 到周期状态和节点信息var err errorpodsAdded, stateToUse, nodeInfoToUse, err = addNominatedPods(ctx, f, pod, state, info)if err != nil {return framework.AsStatus(err)}} else if !podsAdded || !status.IsSuccess() {break}// 运行过滤插件status = f.RunFilterPlugins(ctx, stateToUse, pod, nodeInfoToUse)if !status.IsSuccess() && !status.IsUnschedulable() {return status}}return status
}
注意到这里执行了两遍筛选,主要是考虑到这个node上面可能存在一些预计要被调度过来的pod,在第一轮中会假设这些pod真的会被调度过来,然后查看是否满足pod筛选需求,在第二列会假设这些pod最后没有被调度过来,然后检查是否满足pod的筛选需求。因为在第一轮中可能会存在反亲和性要求,导致无法通过筛选,在第二轮中可能会存在亲和性要求,导致无法通过筛选,这是一种很保守的筛选方式。
利用各个插件进行筛选的函数(RunFilterPlugins
)在pkg/scheduler/framework/runtime/framework.go:725
中,如下
// RunFilterPlugins runs the set of configured Filter plugins for pod on
// the given node. If any of these plugins doesn't return "Success", the
// given node is not suitable for running pod.
// Meanwhile, the failure message and status are set for the given node.
func (f *frameworkImpl) RunFilterPlugins(ctx context.Context,state *framework.CycleState,pod *v1.Pod,nodeInfo *framework.NodeInfo,
) *framework.Status {for _, pl := range f.filterPlugins {if state.SkipFilterPlugins.Has(pl.Name()) {continue}metrics.PluginEvaluationTotal.WithLabelValues(pl.Name(), metrics.Filter, f.profileName).Inc()if status := f.runFilterPlugin(ctx, pl, state, pod, nodeInfo); !status.IsSuccess() {if !status.IsUnschedulable() {// Filter plugins are not supposed to return any status other than// Success or Unschedulable.status = framework.AsStatus(fmt.Errorf("running %q filter plugin: %w", pl.Name(), status.AsError()))}status.SetFailedPlugin(pl.Name())return status}}return nil
}
这里的逻辑很简单,就是遍历各个筛选的插件,依次检查是否符合要求。
可以继续看runFilterPlugin
这运行一个筛选插件进行检查的函数,在pkg/scheduler/framework/runtime/framework.go:750中。
func (f *frameworkImpl) runFilterPlugin(ctx context.Context, pl framework.FilterPlugin, state *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {if !state.ShouldRecordPluginMetrics() {return pl.Filter(ctx, state, pod, nodeInfo)}startTime := time.Now()status := pl.Filter(ctx, state, pod, nodeInfo)f.metricsRecorder.ObservePluginDurationAsync(metrics.Filter, pl.Name(), status.Code().String(), metrics.SinceInSeconds(startTime))return status
}
主要也就是调用插件的Filter函数,具体插件的介绍后面再补充。
打分过程
打分的函数prioritizeNodes
在pkg/scheduler/schedule_one.go
中,如下,补充了部分注释
func prioritizeNodes(ctx context.Context,extenders []framework.Extender,fwk framework.Framework,state *framework.CycleState,pod *v1.Pod,nodes []*v1.Node,
) ([]framework.NodePluginScores, error) {// 如果没有提供优先级配置,则所有节点的分数都设为 1。// 这是为了在所需的格式中生成优先级列表if len(extenders) == 0 && !fwk.HasScorePlugins() {result := make([]framework.NodePluginScores, 0, len(nodes))for i := range nodes {result = append(result, framework.NodePluginScores{Name: nodes[i].Name,TotalScore: 1,})}return result, nil}// 运行 PreScore 插件。preScoreStatus := fwk.RunPreScorePlugins(ctx, state, pod, nodes)if !preScoreStatus.IsSuccess() {return nil, preScoreStatus.AsError()}// 运行 Score 插件。nodesScores, scoreStatus := fwk.RunScorePlugins(ctx, state, pod, nodes)if !scoreStatus.IsSuccess() {return nil, scoreStatus.AsError()}// 如果启用了详细日志记录,记录每个插件对每个节点的打分klogV := klog.V(10)if klogV.Enabled() {for _, nodeScore := range nodesScores {for _, pluginScore := range nodeScore.Scores {klogV.InfoS("Plugin scored node for pod", "pod", klog.KObj(pod), "plugin", pluginScore.Name, "node", nodeScore.Name, "score", pluginScore.Score)}}}// 如果有扩展器并且有节点,运行扩展器if len(extenders) != 0 && nodes != nil {allNodeExtendersScores := make(map[string]*framework.NodePluginScores, len(nodes))var mu sync.Mutexvar wg sync.WaitGroup// 并发运行每个扩展器的优先级函数for i := range extenders {if !extenders[i].IsInterested(pod) {continue}wg.Add(1)go func(extIndex int) {defer wg.Done()metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Inc()metrics.Goroutines.WithLabelValues(metrics.PrioritizingExtender).Inc()defer func() {metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Dec()metrics.Goroutines.WithLabelValues(metrics.PrioritizingExtender).Dec()}()prioritizedList, weight, err := extenders[extIndex].Prioritize(pod, nodes)if err != nil {klog.V(5).InfoS("Failed to run extender's priority function. No score given by this extender.", "error", err, "pod", klog.KObj(pod), "extender", extenders[extIndex].Name())return}mu.Lock()defer mu.Unlock()for i := range *prioritizedList {nodename := (*prioritizedList)[i].Hostscore := (*prioritizedList)[i].ScoreklogV.InfoS("Extender scored node for pod", "pod", klog.KObj(pod), "extender", extenders[extIndex].Name(), "node", nodename, "score", score)// 将扩展器的分数转换为调度器使用的分数范围finalscore := score * weight * (framework.MaxNodeScore / extenderv1.MaxExtenderPriority)if allNodeExtendersScores[nodename] == nil {allNodeExtendersScores[nodename] = &framework.NodePluginScores{Name: nodename,Scores: make([]framework.PluginScore, 0, len(extenders)),}}allNodeExtendersScores[nodename].Scores = append(allNodeExtendersScores[nodename].Scores, framework.PluginScore{Name: extenders[extIndex].Name(),Score: finalscore,})allNodeExtendersScores[nodename].TotalScore += finalscore}}(i)}wg.Wait() // 等待所有扩展器完成// 将扩展器的分数添加到节点分数中for i := range nodesScores {if score, ok := allNodeExtendersScores[nodes[i].Name]; ok {nodesScores[i].Scores = append(nodesScores[i].Scores, score.Scores...)nodesScores[i].TotalScore += score.TotalScore}}}// 记录每个节点的最终分数if klogV.Enabled() {for i := range nodesScores {klogV.InfoS("Calculated node's final score for pod", "pod", klog.KObj(pod), "node", nodesScores[i].Name, "score", nodesScores[i].TotalScore)}}return nodesScores, nil
}
主要流程包括:
- 如果没有提供任何扩展器或打分插件,则为所有节点设置默认分数,并返回。
- 运行 PreScore 插件,为打分阶段做准备。
- 运行 Score 插件,获取每个节点的分数。
- 如果有扩展器并且有节点,则并发运行每个扩展器的优先级函数,获取扩展器为节点分配的分数。
- 将扩展器的分数转换为调度器使用的分数范围,并添加到节点分数中。
- 记录每个节点的最终分数。
这里补充一下其记录节点分数的结构体NodePluginScores
,在文件pkg/scheduler/framework/interface.go:55
中,其定义如下:
// NodePluginScores is a struct with node name and scores for that node.
type NodePluginScores struct {// Name is node name.Name string// Scores is scores from plugins and extenders.Scores []PluginScore// TotalScore is the total score in Scores.TotalScore int64
}// PluginScore is a struct with plugin/extender name and score.
type PluginScore struct {// Name is the name of plugin or extender.Name stringScore int64
}
可以看到每个插件给node打分都是一个int64的类型,一个节点可能会被多个插件进行打分,最后再汇总。
再回到插件打分,这里我们主要关注关键的打分插件RunScorePlugins
,在pkg/scheduler/framework/runtime/framework.go:931
中,如下,补充了部分注释
func (f *frameworkImpl) RunScorePlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodes []*v1.Node) (ns []framework.NodePluginScores, status *framework.Status) {startTime := time.Now()defer func() {// 记录打分扩展点的持续时间metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Score, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))}()allNodePluginScores := make([]framework.NodePluginScores, len(nodes))numPlugins := len(f.scorePlugins) - state.SkipScorePlugins.Len()plugins := make([]framework.ScorePlugin, 0, numPlugins)pluginToNodeScores := make(map[string]framework.NodeScoreList, numPlugins)// 为每个插件创建一个节点分数列表for _, pl := range f.scorePlugins {if state.SkipScorePlugins.Has(pl.Name()) {continue}plugins = append(plugins, pl)pluginToNodeScores[pl.Name()] = make(framework.NodeScoreList, len(nodes))}ctx, cancel := context.WithCancel(ctx)defer cancel()errCh := parallelize.NewErrorChannel()if len(plugins) > 0 {// 并行地为每个节点运行每个插件的 Score 方法f.Parallelizer().Until(ctx, len(nodes), func(index int) {nodeName := nodes[index].Namefor _, pl := range plugins {s, status := f.runScorePlugin(ctx, pl, state, pod, nodeName)if !status.IsSuccess() {err := fmt.Errorf("plugin %q failed with: %w", pl.Name(), status.AsError())errCh.SendErrorWithCancel(err, cancel)return}pluginToNodeScores[pl.Name()][index] = framework.NodeScore{Name: nodeName,Score: s,}}}, metrics.Score)if err := errCh.ReceiveError(); err != nil {return nil, framework.AsStatus(fmt.Errorf("running Score plugins: %w", err))}}// 并行地为每个打分插件运行 NormalizeScore 方法f.Parallelizer().Until(ctx, len(plugins), func(index int) {pl := plugins[index]if pl.ScoreExtensions() == nil {return}nodeScoreList := pluginToNodeScores[pl.Name()]status := f.runScoreExtension(ctx, pl, state, pod, nodeScoreList)if !status.IsSuccess() {err := fmt.Errorf("plugin %q failed with: %w", pl.Name(), status.AsError())errCh.SendErrorWithCancel(err, cancel)return}}, metrics.Score)if err := errCh.ReceiveError(); err != nil {return nil, framework.AsStatus(fmt.Errorf("running Normalize on Score plugins: %w", err))}// 并行地为每个打分插件应用分数权重,并构建 allNodePluginScoresf.Parallelizer().Until(ctx, len(nodes), func(index int) {nodePluginScores := framework.NodePluginScores{Name: nodes[index].Name,Scores: make([]framework.PluginScore, len(plugins)),}for i, pl := range plugins {weight := f.scorePluginWeight[pl.Name()]nodeScoreList := pluginToNodeScores[pl.Name()]score := nodeScoreList[index].Scoreif score > framework.MaxNodeScore || score < framework.MinNodeScore {err := fmt.Errorf("plugin %q returns an invalid score %v, it should in the range of [%v, %v] after normalizing", pl.Name(), score, framework.MinNodeScore, framework.MaxNodeScore)errCh.SendErrorWithCancel(err, cancel)return}weightedScore := score * int64(weight)nodePluginScores.Scores[i] = framework.PluginScore{Name: pl.Name(),Score: weightedScore,}nodePluginScores.TotalScore += weightedScore}allNodePluginScores[index] = nodePluginScores}, metrics.Score)if err := errCh.ReceiveError(); err != nil {return nil, framework.AsStatus(fmt.Errorf("applying score defaultWeights on Score plugins: %w", err))}// 返回所有节点的插件分数return allNodePluginScores, nil
}
主要流程包括:
- 为每个插件创建一个节点分数列表。
- 使用并行处理为每个节点运行每个插件的
Score
方法。 - 为每个插件运行
NormalizeScore
方法,以标准化分数。 - 应用每个插件的分数权重,构建最终的节点分数。
- 返回各个节点的分数
查看插件打分的函数runScorePlugin,在pkg/scheduler/framework/runtime/framework.go:1025
中,如下。
func (f *frameworkImpl) runScorePlugin(ctx context.Context, pl framework.ScorePlugin, state *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {if !state.ShouldRecordPluginMetrics() {return pl.Score(ctx, state, pod, nodeName)}startTime := time.Now()s, status := pl.Score(ctx, state, pod, nodeName)f.metricsRecorder.ObservePluginDurationAsync(metrics.Score, pl.Name(), status.Code().String(), metrics.SinceInSeconds(startTime))return s, status
}
可以看到主要是调用插件的Score方法。
一般调度的后期处理
PostFilter插件
在schedulingCycle
中可以看到如果上述的一般调度没有为Pod找到合适的node,并且错误不是没有合适的node,即ErrNoNodesAvailable
的话,就会检查是否存在有PostFilterPlugins,如果有就运行,即运行RunPostFilterPlugins
函数,来进行相关的处理,例如释放一些资源,从而希望使得该pod在下一次调度时有机会成功调度,当然这被释放的资源也可能被其他不同的pod给占用了,但是这对系统是无害的,所以也不管。
该RunPostFilterPlugins
函数在pkg/scheduler/framework/runtime/framework.go:762
中,如下所示
// RunPostFilterPlugins runs the set of configured PostFilter plugins until the first
// Success, Error or UnschedulableAndUnresolvable is met; otherwise continues to execute all plugins.
func (f *frameworkImpl) RunPostFilterPlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, filteredNodeStatusMap framework.NodeToStatusMap) (_ *framework.PostFilterResult, status *framework.Status) {startTime := time.Now()defer func() {metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.PostFilter, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))}()// `result` records the last meaningful(non-noop) PostFilterResult.var result *framework.PostFilterResultvar reasons []stringvar failedPlugin stringfor _, pl := range f.postFilterPlugins {r, s := f.runPostFilterPlugin(ctx, pl, state, pod, filteredNodeStatusMap)if s.IsSuccess() {return r, s} else if s.Code() == framework.UnschedulableAndUnresolvable {return r, s.WithFailedPlugin(pl.Name())} else if !s.IsUnschedulable() {// Any status other than Success, Unschedulable or UnschedulableAndUnresolvable is Error.return nil, framework.AsStatus(s.AsError()).WithFailedPlugin(pl.Name())} else if r != nil && r.Mode() != framework.ModeNoop {result = r}reasons = append(reasons, s.Reasons()...)// Record the first failed plugin unless we proved that// the latter is more relevant.if len(failedPlugin) == 0 {failedPlugin = pl.Name()}}return result, framework.NewStatus(framework.Unschedulable, reasons...).WithFailedPlugin(failedPlugin)
}
可以看到他就是遍历了所有的postFilter插件,然后使用函数runPostFilterPlugin
运行这些插件,其在pkg/scheduler/framework/runtime/framework.go:796
中
func (f *frameworkImpl) runPostFilterPlugin(ctx context.Context, pl framework.PostFilterPlugin, state *framework.CycleState, pod *v1.Pod, filteredNodeStatusMap framework.NodeToStatusMap) (*framework.PostFilterResult, *framework.Status) {if !state.ShouldRecordPluginMetrics() {return pl.PostFilter(ctx, state, pod, filteredNodeStatusMap)}startTime := time.Now()r, s := pl.PostFilter(ctx, state, pod, filteredNodeStatusMap)f.metricsRecorder.ObservePluginDurationAsync(metrics.PostFilter, pl.Name(), s.Code().String(), metrics.SinceInSeconds(startTime))return r, s
}
Reserve插件
得到想要调度到的pod后,可能需要执行一些资源预留的操作,就需要定义在reserve插件中,该插件对应的调用函数为RunReservePluginsReserve,在pkg/scheduler/framework/runtime/framework.go:1144
中
// RunReservePluginsReserve runs the Reserve method in the set of configured
// reserve plugins. If any of these plugins returns an error, it does not
// continue running the remaining ones and returns the error. In such a case,
// the pod will not be scheduled and the caller will be expected to call
// RunReservePluginsUnreserve.
func (f *frameworkImpl) RunReservePluginsReserve(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (status *framework.Status) {startTime := time.Now()defer func() {metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Reserve, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))}()for _, pl := range f.reservePlugins {status = f.runReservePluginReserve(ctx, pl, state, pod, nodeName)if !status.IsSuccess() {err := status.AsError()klog.ErrorS(err, "Failed running Reserve plugin", "plugin", pl.Name(), "pod", klog.KObj(pod))return framework.AsStatus(fmt.Errorf("running Reserve plugin %q: %w", pl.Name(), err))}}return nil
}
这里也是遍历所有的reserve插件,如果有任意一个插件失败了那么就失败了。单个插件的调用函数在pkg/scheduler/framework/runtime/framework.go:1160
中,如下
func (f *frameworkImpl) runReservePluginReserve(ctx context.Context, pl framework.ReservePlugin, state *framework.CycleState, pod *v1.Pod, nodeName string) *framework.Status {if !state.ShouldRecordPluginMetrics() {return pl.Reserve(ctx, state, pod, nodeName)}startTime := time.Now()status := pl.Reserve(ctx, state, pod, nodeName)f.metricsRecorder.ObservePluginDurationAsync(metrics.Reserve, pl.Name(), status.Code().String(), metrics.SinceInSeconds(startTime))return status
}
Permit插件
找到了要调度的pod后还需要运行permit插件,该插件主要用来查看记录是否还需要等待一下其他操作,例如抢占某个pod的资源,那么就需要等待被抢占pod的资源释放掉。
该插件对应的函数RunPermitPlugins
在pkg/scheduler/framework/runtime/framework.go:1200
中,如下
// RunPermitPlugins runs the set of configured permit plugins. If any of these
// plugins returns a status other than "Success" or "Wait", it does not continue
// running the remaining plugins and returns an error. Otherwise, if any of the
// plugins returns "Wait", then this function will create and add waiting pod
// to a map of currently waiting pods and return status with "Wait" code.
// Pod will remain waiting pod for the minimum duration returned by the permit plugins.
func (f *frameworkImpl) RunPermitPlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (status *framework.Status) {startTime := time.Now() // 记录permit插件开始运行的时间defer func() {// 记录permit插件的运行时间和最终状态metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Permit, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))}()pluginsWaitTime := make(map[string]time.Duration) // 存储每个插件的等待时间statusCode := framework.Success // 初始化状态码为成功for _, pl := range f.permitPlugins {// 运行当前permit插件status, timeout := f.runPermitPlugin(ctx, pl, state, pod, nodeName)if !status.IsSuccess() {if status.IsUnschedulable() {// 如果插件返回不可调度的状态,则记录日志并返回该状态klog.V(4).InfoS("Pod rejected by permit plugin", "pod", klog.KObj(pod), "plugin", pl.Name(), "status", status.Message())status.SetFailedPlugin(pl.Name()) // 设置失败的插件名称return status}if status.IsWait() {// 如果插件返回等待的状态,则记录等待时间,但不立即返回// 允许的最长等待时间由 maxTimeout 限制if timeout > maxTimeout {timeout = maxTimeout}pluginsWaitTime[pl.Name()] = timeoutstatusCode = framework.Wait // 更新状态码为等待} else {// 如果插件返回错误状态,则记录错误日志并返回错误状态err := status.AsError()klog.ErrorS(err, "Failed running Permit plugin", "plugin", pl.Name(), "pod", klog.KObj(pod))return framework.AsStatus(fmt.Errorf("running Permit plugin %q: %w", pl.Name(), err)).WithFailedPlugin(pl.Name())}}}if statusCode == framework.Wait {// 如果任何插件返回等待状态,则创建并添加等待中的 Pod 到映射中,并返回等待状态waitingPod := newWaitingPod(pod, pluginsWaitTime)f.waitingPods.add(waitingPod)msg := fmt.Sprintf("one or more plugins asked to wait and no plugin rejected pod %q", pod.Name)klog.V(4).InfoS("One or more plugins asked to wait and no plugin rejected pod", "pod", klog.KObj(pod))return framework.NewStatus(framework.Wait, msg)}// 如果所有插件都成功或返回等待,且没有插件拒绝 Pod,则返回 nil 表示没有错误return nil
}
主要流程包括:
- 记录开始运行许可插件的时间。
- 使用
defer
语句确保无论函数如何结束,都记录许可插件的运行时间和状态。 - 遍历所有的permit插件。
- 运行当前插件,并将结果状态保存到
status
。 - 检查状态:
- 如果状态是成功的,则继续运行下一个插件。
- 如果状态是不可调度的,则记录日志并返回该状态。
- 如果状态是等待的,则记录等待时间,并更新状态码为等待,然后继续运行下一个插件。
- 如果状态是错误,则记录错误日志,并返回错误状态。
- 如果任何插件返回等待状态,则创建等待中的 Pod 并添加到映射中,然后返回等待状态。
- 如果所有插件都成功或返回等待,且没有插件拒绝 Pod,则返回
nil
。
这篇关于【K8s源码分析(三)】-K8s调度器调度周期介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!