NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常

本文主要是介绍NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SARAL Near-Real-Time Value-added Operational Geophysical Data Record Sea Surface Height Anomaly

SARAL 近实时增值业务地球物理数据记录海面高度异常

简介

2020 年 3 月 18 日至今

ALTIKA_SARAL_L2_OST_XOGDR

这些数据是近实时(NRT)(测量后7-9小时内)海面高度异常(SSHA)数据,来自ARgos和ALtiKa卫星(SARAL)上的AltiKa高度计。SARAL是法国(法国国家空间研究中心)和印度(SARAL)的一项合作任务,利用Ka波段AltiKa高度计测量海面高度,于2013年2月25日发射。这些数据与该项目生成的业务地球物理数据记录(OGDR)数据的主要区别在于,SARAL的轨道在卫星间交叉位置使用SSHA与OSTM/Jason-2 GPS-OGDR-SSHA产品的差异进行了调整。这样,利用 OSTM/Jason-2 GPS-OGDR-SSHA 产品使用的 GPS 轨道的 1 厘米(径向均方根)精度,为 SARAL 生成了精度为 1.5 厘米(均方根)的更精确的 NRT 轨道高度。该数据集还包含项目(缩小版)OGDR 的所有数据,以及改进的测高仪风速和海况偏差校正。有关 SARAL 任务的更多信息,请访问:Home

DOI10.5067/AKASA-XOGD1
MeasurementOCEANS > SEA SURFACE TOPOGRAPHY > SEA SURFACE HEIGHT
OCEANS > OCEAN WAVES > SIGNIFICANT WAVE HEIGHT
Swath Width11 km
Platform/Sensor

SARAL

 / 

ALTIKA Altimeter

ProjectSatellite with ARgos and ALtiKa (SARAL)
Data ProviderPublisher: JPL
Creator: Shailen Desai
Release Place: JPL
Release Date: 2013-Dec-03
 
FormatnetCDF-4

分辨率

空间分辨率: 8000 米 x 8000 米
时间分辨率月 - < 年
 
覆盖范围
北边界坐标: 82 度
南边界坐标:-82 度
西边界坐标: -180度
东边界坐标: -180度180 度
时间跨度:2020 年 3 月 18 日至今
颗粒时间跨度:2013 年 11 月 18 日至 2024 年 6 月 02 日
扫描带宽:11 千米
 
投影
投影类型:卫星原生沿轨投影
投影细节每个像素都包含地理位置信息
椭球面WGS 84

表格:数据变量

NameLong NameUnit
alt1 Hz altitude of satellitem
alt_dyn1 Hz altitude of satellite (Dynamic fit to DORIS-DIODE)m
bathymetryocean depth/land elevationm
ecmwf_meteo_map_availECMWF meteorological map availability
hf_fluctuations_corrhigh frequency fluctuations of the sea surface topographym
ice_flagice flag
internal_tideinternal tide heightm
inv_bar_corrinverted barometer height correctionm
iono_corr_gimGIM ionospheric correctionm
latlatitudedegrees_north
lonlongitudedegrees_east
mean_sea_surface_sol1mean sea surface height (solution 1) above reference ellipsoidm
mean_topographymean dynamic topography above geoidm
model_dry_tropo_corrmodel dry tropospheric correctionm
ocean_tide_sol2geocentric ocean tide height (solution 2)m
pole_tidegeocentric pole tide heightm
rad_liquid_waterradiometer liquid water contentkg/m^2
rad_surf_typeradiometer surface type
rad_water_vaporradiometer water vapor contentkg/m^2
rad_wet_tropo_corrradiometer wet tropospheric correctionm
range1 Hz corrected altimeter rangem
sea_state_biassea state bias correctionm
sig0Corrected backscatter coefficientdB
solid_earth_tidesolid earth tide heightm
sshasea surface height anomalym
ssha_dynsea surface height anomalym
surface_typesurface type
swhCorrected significant waveheightm
timetime (sec. since 2000-01-01)seconds since 2000-01-01 00:00:00.0
trailing_edge_variation_flag1 Hz trailing edge variation flag
wind_speed_altaltimeter wind speedm/s
xover_corrsea surface height cross over correctionm

SHARE THIS PAGE  

CLOUD ENABLED

Status:

ACTIVE

Short Name:

ALTIKA_SARAL_L2_OST_XOGDR

Collection Concept ID:

C2251465126-POCLOUD

Spatial Coverage:

N: 82°

S: -82°

E: 180°

W: -180°

Access:

  • Search Granules
  • Browse Granule Listing

Capabilities:

DownloadSubsetVisualize

Data Recipes:

  • Generic Data Readers

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ALTIKA_SARAL_L2_OST_XOGDR",cloud_hosted=True,bounding_box=(-180.0, -82.0, 180.0, 82.0),temporal=("2020-03-18", "2020-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

DIRECT ACCESS
Browse Granule Listing

Sort By

Search Granules

https://search.earthdata.nasa.gov/search/granules?p=C2251465126-POCLOUD

网址推荐

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045036

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测