NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常

本文主要是介绍NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SARAL Near-Real-Time Value-added Operational Geophysical Data Record Sea Surface Height Anomaly

SARAL 近实时增值业务地球物理数据记录海面高度异常

简介

2020 年 3 月 18 日至今

ALTIKA_SARAL_L2_OST_XOGDR

这些数据是近实时(NRT)(测量后7-9小时内)海面高度异常(SSHA)数据,来自ARgos和ALtiKa卫星(SARAL)上的AltiKa高度计。SARAL是法国(法国国家空间研究中心)和印度(SARAL)的一项合作任务,利用Ka波段AltiKa高度计测量海面高度,于2013年2月25日发射。这些数据与该项目生成的业务地球物理数据记录(OGDR)数据的主要区别在于,SARAL的轨道在卫星间交叉位置使用SSHA与OSTM/Jason-2 GPS-OGDR-SSHA产品的差异进行了调整。这样,利用 OSTM/Jason-2 GPS-OGDR-SSHA 产品使用的 GPS 轨道的 1 厘米(径向均方根)精度,为 SARAL 生成了精度为 1.5 厘米(均方根)的更精确的 NRT 轨道高度。该数据集还包含项目(缩小版)OGDR 的所有数据,以及改进的测高仪风速和海况偏差校正。有关 SARAL 任务的更多信息,请访问:Home

DOI10.5067/AKASA-XOGD1
MeasurementOCEANS > SEA SURFACE TOPOGRAPHY > SEA SURFACE HEIGHT
OCEANS > OCEAN WAVES > SIGNIFICANT WAVE HEIGHT
Swath Width11 km
Platform/Sensor

SARAL

 / 

ALTIKA Altimeter

ProjectSatellite with ARgos and ALtiKa (SARAL)
Data ProviderPublisher: JPL
Creator: Shailen Desai
Release Place: JPL
Release Date: 2013-Dec-03
 
FormatnetCDF-4

分辨率

空间分辨率: 8000 米 x 8000 米
时间分辨率月 - < 年
 
覆盖范围
北边界坐标: 82 度
南边界坐标:-82 度
西边界坐标: -180度
东边界坐标: -180度180 度
时间跨度:2020 年 3 月 18 日至今
颗粒时间跨度:2013 年 11 月 18 日至 2024 年 6 月 02 日
扫描带宽:11 千米
 
投影
投影类型:卫星原生沿轨投影
投影细节每个像素都包含地理位置信息
椭球面WGS 84

表格:数据变量

NameLong NameUnit
alt1 Hz altitude of satellitem
alt_dyn1 Hz altitude of satellite (Dynamic fit to DORIS-DIODE)m
bathymetryocean depth/land elevationm
ecmwf_meteo_map_availECMWF meteorological map availability
hf_fluctuations_corrhigh frequency fluctuations of the sea surface topographym
ice_flagice flag
internal_tideinternal tide heightm
inv_bar_corrinverted barometer height correctionm
iono_corr_gimGIM ionospheric correctionm
latlatitudedegrees_north
lonlongitudedegrees_east
mean_sea_surface_sol1mean sea surface height (solution 1) above reference ellipsoidm
mean_topographymean dynamic topography above geoidm
model_dry_tropo_corrmodel dry tropospheric correctionm
ocean_tide_sol2geocentric ocean tide height (solution 2)m
pole_tidegeocentric pole tide heightm
rad_liquid_waterradiometer liquid water contentkg/m^2
rad_surf_typeradiometer surface type
rad_water_vaporradiometer water vapor contentkg/m^2
rad_wet_tropo_corrradiometer wet tropospheric correctionm
range1 Hz corrected altimeter rangem
sea_state_biassea state bias correctionm
sig0Corrected backscatter coefficientdB
solid_earth_tidesolid earth tide heightm
sshasea surface height anomalym
ssha_dynsea surface height anomalym
surface_typesurface type
swhCorrected significant waveheightm
timetime (sec. since 2000-01-01)seconds since 2000-01-01 00:00:00.0
trailing_edge_variation_flag1 Hz trailing edge variation flag
wind_speed_altaltimeter wind speedm/s
xover_corrsea surface height cross over correctionm

SHARE THIS PAGE  

CLOUD ENABLED

Status:

ACTIVE

Short Name:

ALTIKA_SARAL_L2_OST_XOGDR

Collection Concept ID:

C2251465126-POCLOUD

Spatial Coverage:

N: 82°

S: -82°

E: 180°

W: -180°

Access:

  • Search Granules
  • Browse Granule Listing

Capabilities:

DownloadSubsetVisualize

Data Recipes:

  • Generic Data Readers

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ALTIKA_SARAL_L2_OST_XOGDR",cloud_hosted=True,bounding_box=(-180.0, -82.0, 180.0, 82.0),temporal=("2020-03-18", "2020-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

DIRECT ACCESS
Browse Granule Listing

Sort By

Search Granules

https://search.earthdata.nasa.gov/search/granules?p=C2251465126-POCLOUD

网址推荐

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045036

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下