NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常

本文主要是介绍NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SARAL Near-Real-Time Value-added Operational Geophysical Data Record Sea Surface Height Anomaly

SARAL 近实时增值业务地球物理数据记录海面高度异常

简介

2020 年 3 月 18 日至今

ALTIKA_SARAL_L2_OST_XOGDR

这些数据是近实时(NRT)(测量后7-9小时内)海面高度异常(SSHA)数据,来自ARgos和ALtiKa卫星(SARAL)上的AltiKa高度计。SARAL是法国(法国国家空间研究中心)和印度(SARAL)的一项合作任务,利用Ka波段AltiKa高度计测量海面高度,于2013年2月25日发射。这些数据与该项目生成的业务地球物理数据记录(OGDR)数据的主要区别在于,SARAL的轨道在卫星间交叉位置使用SSHA与OSTM/Jason-2 GPS-OGDR-SSHA产品的差异进行了调整。这样,利用 OSTM/Jason-2 GPS-OGDR-SSHA 产品使用的 GPS 轨道的 1 厘米(径向均方根)精度,为 SARAL 生成了精度为 1.5 厘米(均方根)的更精确的 NRT 轨道高度。该数据集还包含项目(缩小版)OGDR 的所有数据,以及改进的测高仪风速和海况偏差校正。有关 SARAL 任务的更多信息,请访问:Home

DOI10.5067/AKASA-XOGD1
MeasurementOCEANS > SEA SURFACE TOPOGRAPHY > SEA SURFACE HEIGHT
OCEANS > OCEAN WAVES > SIGNIFICANT WAVE HEIGHT
Swath Width11 km
Platform/Sensor

SARAL

 / 

ALTIKA Altimeter

ProjectSatellite with ARgos and ALtiKa (SARAL)
Data ProviderPublisher: JPL
Creator: Shailen Desai
Release Place: JPL
Release Date: 2013-Dec-03
 
FormatnetCDF-4

分辨率

空间分辨率: 8000 米 x 8000 米
时间分辨率月 - < 年
 
覆盖范围
北边界坐标: 82 度
南边界坐标:-82 度
西边界坐标: -180度
东边界坐标: -180度180 度
时间跨度:2020 年 3 月 18 日至今
颗粒时间跨度:2013 年 11 月 18 日至 2024 年 6 月 02 日
扫描带宽:11 千米
 
投影
投影类型:卫星原生沿轨投影
投影细节每个像素都包含地理位置信息
椭球面WGS 84

表格:数据变量

NameLong NameUnit
alt1 Hz altitude of satellitem
alt_dyn1 Hz altitude of satellite (Dynamic fit to DORIS-DIODE)m
bathymetryocean depth/land elevationm
ecmwf_meteo_map_availECMWF meteorological map availability
hf_fluctuations_corrhigh frequency fluctuations of the sea surface topographym
ice_flagice flag
internal_tideinternal tide heightm
inv_bar_corrinverted barometer height correctionm
iono_corr_gimGIM ionospheric correctionm
latlatitudedegrees_north
lonlongitudedegrees_east
mean_sea_surface_sol1mean sea surface height (solution 1) above reference ellipsoidm
mean_topographymean dynamic topography above geoidm
model_dry_tropo_corrmodel dry tropospheric correctionm
ocean_tide_sol2geocentric ocean tide height (solution 2)m
pole_tidegeocentric pole tide heightm
rad_liquid_waterradiometer liquid water contentkg/m^2
rad_surf_typeradiometer surface type
rad_water_vaporradiometer water vapor contentkg/m^2
rad_wet_tropo_corrradiometer wet tropospheric correctionm
range1 Hz corrected altimeter rangem
sea_state_biassea state bias correctionm
sig0Corrected backscatter coefficientdB
solid_earth_tidesolid earth tide heightm
sshasea surface height anomalym
ssha_dynsea surface height anomalym
surface_typesurface type
swhCorrected significant waveheightm
timetime (sec. since 2000-01-01)seconds since 2000-01-01 00:00:00.0
trailing_edge_variation_flag1 Hz trailing edge variation flag
wind_speed_altaltimeter wind speedm/s
xover_corrsea surface height cross over correctionm

SHARE THIS PAGE  

CLOUD ENABLED

Status:

ACTIVE

Short Name:

ALTIKA_SARAL_L2_OST_XOGDR

Collection Concept ID:

C2251465126-POCLOUD

Spatial Coverage:

N: 82°

S: -82°

E: 180°

W: -180°

Access:

  • Search Granules
  • Browse Granule Listing

Capabilities:

DownloadSubsetVisualize

Data Recipes:

  • Generic Data Readers

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ALTIKA_SARAL_L2_OST_XOGDR",cloud_hosted=True,bounding_box=(-180.0, -82.0, 180.0, 82.0),temporal=("2020-03-18", "2020-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

DIRECT ACCESS
Browse Granule Listing

Sort By

Search Granules

https://search.earthdata.nasa.gov/search/granules?p=C2251465126-POCLOUD

网址推荐

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045036

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个