From self-attention 2 flash-attention 数学原理与 cuda 实现优化

2024-06-09 07:44

本文主要是介绍From self-attention 2 flash-attention 数学原理与 cuda 实现优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

self attension 是transformer 编码器和解码器中共同的一个计算环节,在整个transformer 网络体系中耗费的算力比例占主导。所以节省self attention 的正向和反向的计算时间,就可以加速 transormer 的训练和推理过程。

1,self attention 的数学提炼

两个矩阵乘法,加入一个列向的softmax

input   矩阵: \mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbf{R}^{N \times d}

output 矩阵:\mathbf{O} \in \mathbf{R}^{N \times d}

 

\mathbf{self\ attention\ algorithm:}

        step1:        \mathbf{S} = \mathbf{Q}*\mathbf{K}^t

        step2:        \mathbf{P} = \mathbf{softmax_{column}(S)}

        step3:        \mathbf{O} = \mathbf{P}*\mathbf{V}

2,cpu 实现self attention

这里的数据类型使用了 float,实际网络中一般采用 fp16,数学过程是相同的;

cpu_self_attention.cpp

#include <stdio.h>
#include <string.h>#include "cpu_gemm.h"
#include "utils.h"
#include "soft_max.h"
//all matrices are row major.void cpu_self_attention(float* Q, int ldq,float* K, int ldk,float* V, int ldv,float* S, int lds,float* P, int ldp,float* O, int ldo,int N, int d)
{gemm_nt(Q, ldq, K, ldk, S, lds, N, N, d);// S = Q*K^t     (NxN) = (Nxd) * (dxN)printf("\nS =\n");	print_matrix(S, N, N, lds);soft_max_column(P, ldp, S, lds, N, N);// P(NxN) = softmax(S(NxN))printf("\nP =\n");	print_matrix(S, N, N, lds);gemm_nn(P, ldp, V, ldv, O, ldo, N, d, N);// O = P*V     (Nxd) = (NxN) * (Nxd)
}

cpu_gemm.cpp

#include "cpu_gemm.h"void gemm_nn(float *A, int lda,		//A(M x K) rowMjfloat *B, int ldb,		//B(K x N) rowMjfloat *C, int ldc,		//C(M x N) rowMjint M,int N,int K)
{for(int i=0; i<M; i++){for(int j=0; j<N; j++){float sigma = 0.0;for(int k=0; k<K; k++){sigma += A[i*lda + k] * B[k*ldb + j];}C[i*ldc + j] = sigma;}}
}void gemm_nt(float *A, int lda,		//A(M x K) rowMjfloat *B, int ldb,		//B(N x K) rowMjfloat *C, int ldc,		//C(M x N) rowMjint M,int N,int K)
{for(int i=0; i<M; i++){for(int j=0; j<N; j++){float sigma = 0.0;for(int k=0; k<K; k++){sigma += A[i*lda + k] * B[k + j*ldb];}C[i*ldc + j] = sigma;}}
}

cpu_softmax_column.cpp

这里使用的是未数值优化的方式,直接按照原始公式计算:

#include "soft_max.h"
void soft_max_column(float *P, int ldp, float* S, int lds, int M, int N)//P = softmax(S)  P(i,j) = exp(S(i,j))/sigma(exp(S(r,j)));  r=0,1,..,n-1 ;
{for(int j=0; j<N; j++){float sigma = 0.0f;for(int i=0; i<M; i++){sigma += exp(S[i*lds + j])}for(int i=0; i<M; i++){P[i*ldp + j] = S[i*lds + j]/sigma;}}
}

3, gpu 实现 self attention 正向

cuda 实现上述过程:

gpu_self_attention.cu

gpu_gemm.cu

gpu_softmax_column.cu

4,为什么不需要gpu 实现self attention 反向

融合上述过程

5, gpu 实现 flash attention 反向

融合算子

数学原理

cuda 实现

挖坑,未完待续 。。。

这篇关于From self-attention 2 flash-attention 数学原理与 cuda 实现优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044578

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.