Python量化交易学习——Part6:多因子选股策略实战(2)

2024-06-08 22:28

本文主要是介绍Python量化交易学习——Part6:多因子选股策略实战(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节主要是针对上节讲解的进行回测:
策略:
首先根据上节所选的因子进行选股,各个因子的权重都设置为1,之后对加权后的因子进行排序,选择因子权重值大的5只股票,进行买入,每个月执行一次上述策略,看最终收益率情况如何。

首先先编写函数代码,新建一个py文件,我们这里就命名为grow_yinzi_strange.py,内部代码如下:

import numpy as np
import pandas as pd
import gm.api as gm
import datetime
from dateutil.relativedelta import relativedelta
from sklearn.preprocessing import MinMaxScalerdef min_max_scaling(data):min_val = np.min(data)max_val = np.max(data)return (data - min_val) / (max_val - min_val)def grow_yinzi(index,now):HS300_array = gm.stk_get_index_constituents(index) #获取沪深300成分股数据"""按照股票代码从大到小进行排序,注意下面这句非常重要,因为在实际使用过程中我发现,gm.stk_get_finance_deriv()和参数symbols=HS300_symbol_list中的顺序并不一样,这回导致我们采用for循环中得到的参数数据和采用gm.stk_get_finance_deriv()顺序完全不同,所以我们先对股票代码进行排序,以控制for循环中返回的参数数据之后我们再把gm.stk_get_finance_deriv()中得到的顺序同样进行从大到小排序,才能保持两组数据完全一致。"""HS300_array = HS300_array.sort_values(["symbol"],ascending=False)  # 按照股票代码从大到小排序HS300_symbol_array = HS300_array['symbol'].valuesHS300_symbol_list = list(HS300_symbol_array) # 转换为list类型才能进行后续处理# 采用pd.DataFrame建立二维数据表,初始化数据表,后续可以将数据存储到表中factor_matrix = pd.DataFrame([])factor_matrix["symbol"] = HS300_symbol_list# factor_matrix["earnings before interest and tax"] = -999    # 息税前收益增长率,很多数据都差不到,暂时不用这个因子factor_matrix["net_prof_yoy"] = -999    # 净利润同比增长率factor_matrix["oper_prof_yoy"] = -999   # 营业利润同比增长率factor_matrix["ttl_asset_yoy"] = -999   # 总资产同比增长率factor_matrix["net_cf_oper_yoy"] = -999 # 经营活动产生的现金流量净额同比增长率factor_matrix["net_asset_yoy"] = -999   # 净资产同比增长率factor_matrix["eps_bas_yoy"] = -999     # 基本每股收益同比增长率factor_matrix["roe_yoy"] = -999         # 净资产收益率同比增长率(摊薄)factor_matrix["ttl_prof_yoy"] = -999    # 利润总额同比增长率"""在这里所有的值都被定义为-999,这样做的目的是在读取数据的时候,防止有数据缺失或者出错,将默认值设置成现实数据中可能遇到的最小值。这样做的好处是在后续计算时可以自动将出错的数据的计算结果降为最差的结果,自动排除出错的数据集后面我们也可以这样做,先批量获取数据值,之后判断数据有无缺失,如果产生缺失,就逐个获取对应因子的数据,对于缺失的因子数据,采用-999进行填充"""day_time,hour_and_mins = str(now.strftime('%Y-%m-%d %H:%M:%S')).split(" ")  # 调用datetime函数获取最新时间six_months_ago = now - relativedelta(months=3) # 获取9个月前的时间作为后续查询数据的起始时间(主要是息税前收益增长率的计算需要T-1的数据,所有这里设置需要大于6个月)last_day_time,last_hour_and_mins = str(six_months_ago.strftime('%Y-%m-%d %H:%M:%S')).split(" ") # 转换时间格式到str# 求息税前收益增长率,这个没有现成的公式,需要手动计算,计算公式为息税前收益增长率=(本期息税前利润 – 上期息税前利润) / 上期息税前利润 × 100%# 采用dataframe格式获取数据,因为有一些数据无法获取到,所以运行起来特别慢,先注释掉,不采用这个参数"""for number in range(len(HS300_symbol_list))

这篇关于Python量化交易学习——Part6:多因子选股策略实战(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043484

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模