Python量化交易学习——Part6:多因子选股策略实战(2)

2024-06-08 22:28

本文主要是介绍Python量化交易学习——Part6:多因子选股策略实战(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节主要是针对上节讲解的进行回测:
策略:
首先根据上节所选的因子进行选股,各个因子的权重都设置为1,之后对加权后的因子进行排序,选择因子权重值大的5只股票,进行买入,每个月执行一次上述策略,看最终收益率情况如何。

首先先编写函数代码,新建一个py文件,我们这里就命名为grow_yinzi_strange.py,内部代码如下:

import numpy as np
import pandas as pd
import gm.api as gm
import datetime
from dateutil.relativedelta import relativedelta
from sklearn.preprocessing import MinMaxScalerdef min_max_scaling(data):min_val = np.min(data)max_val = np.max(data)return (data - min_val) / (max_val - min_val)def grow_yinzi(index,now):HS300_array = gm.stk_get_index_constituents(index) #获取沪深300成分股数据"""按照股票代码从大到小进行排序,注意下面这句非常重要,因为在实际使用过程中我发现,gm.stk_get_finance_deriv()和参数symbols=HS300_symbol_list中的顺序并不一样,这回导致我们采用for循环中得到的参数数据和采用gm.stk_get_finance_deriv()顺序完全不同,所以我们先对股票代码进行排序,以控制for循环中返回的参数数据之后我们再把gm.stk_get_finance_deriv()中得到的顺序同样进行从大到小排序,才能保持两组数据完全一致。"""HS300_array = HS300_array.sort_values(["symbol"],ascending=False)  # 按照股票代码从大到小排序HS300_symbol_array = HS300_array['symbol'].valuesHS300_symbol_list = list(HS300_symbol_array) # 转换为list类型才能进行后续处理# 采用pd.DataFrame建立二维数据表,初始化数据表,后续可以将数据存储到表中factor_matrix = pd.DataFrame([])factor_matrix["symbol"] = HS300_symbol_list# factor_matrix["earnings before interest and tax"] = -999    # 息税前收益增长率,很多数据都差不到,暂时不用这个因子factor_matrix["net_prof_yoy"] = -999    # 净利润同比增长率factor_matrix["oper_prof_yoy"] = -999   # 营业利润同比增长率factor_matrix["ttl_asset_yoy"] = -999   # 总资产同比增长率factor_matrix["net_cf_oper_yoy"] = -999 # 经营活动产生的现金流量净额同比增长率factor_matrix["net_asset_yoy"] = -999   # 净资产同比增长率factor_matrix["eps_bas_yoy"] = -999     # 基本每股收益同比增长率factor_matrix["roe_yoy"] = -999         # 净资产收益率同比增长率(摊薄)factor_matrix["ttl_prof_yoy"] = -999    # 利润总额同比增长率"""在这里所有的值都被定义为-999,这样做的目的是在读取数据的时候,防止有数据缺失或者出错,将默认值设置成现实数据中可能遇到的最小值。这样做的好处是在后续计算时可以自动将出错的数据的计算结果降为最差的结果,自动排除出错的数据集后面我们也可以这样做,先批量获取数据值,之后判断数据有无缺失,如果产生缺失,就逐个获取对应因子的数据,对于缺失的因子数据,采用-999进行填充"""day_time,hour_and_mins = str(now.strftime('%Y-%m-%d %H:%M:%S')).split(" ")  # 调用datetime函数获取最新时间six_months_ago = now - relativedelta(months=3) # 获取9个月前的时间作为后续查询数据的起始时间(主要是息税前收益增长率的计算需要T-1的数据,所有这里设置需要大于6个月)last_day_time,last_hour_and_mins = str(six_months_ago.strftime('%Y-%m-%d %H:%M:%S')).split(" ") # 转换时间格式到str# 求息税前收益增长率,这个没有现成的公式,需要手动计算,计算公式为息税前收益增长率=(本期息税前利润 – 上期息税前利润) / 上期息税前利润 × 100%# 采用dataframe格式获取数据,因为有一些数据无法获取到,所以运行起来特别慢,先注释掉,不采用这个参数"""for number in range(len(HS300_symbol_list))

这篇关于Python量化交易学习——Part6:多因子选股策略实战(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043484

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步