Python量化交易学习——Part6:多因子选股策略实战(2)

2024-06-08 22:28

本文主要是介绍Python量化交易学习——Part6:多因子选股策略实战(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节主要是针对上节讲解的进行回测:
策略:
首先根据上节所选的因子进行选股,各个因子的权重都设置为1,之后对加权后的因子进行排序,选择因子权重值大的5只股票,进行买入,每个月执行一次上述策略,看最终收益率情况如何。

首先先编写函数代码,新建一个py文件,我们这里就命名为grow_yinzi_strange.py,内部代码如下:

import numpy as np
import pandas as pd
import gm.api as gm
import datetime
from dateutil.relativedelta import relativedelta
from sklearn.preprocessing import MinMaxScalerdef min_max_scaling(data):min_val = np.min(data)max_val = np.max(data)return (data - min_val) / (max_val - min_val)def grow_yinzi(index,now):HS300_array = gm.stk_get_index_constituents(index) #获取沪深300成分股数据"""按照股票代码从大到小进行排序,注意下面这句非常重要,因为在实际使用过程中我发现,gm.stk_get_finance_deriv()和参数symbols=HS300_symbol_list中的顺序并不一样,这回导致我们采用for循环中得到的参数数据和采用gm.stk_get_finance_deriv()顺序完全不同,所以我们先对股票代码进行排序,以控制for循环中返回的参数数据之后我们再把gm.stk_get_finance_deriv()中得到的顺序同样进行从大到小排序,才能保持两组数据完全一致。"""HS300_array = HS300_array.sort_values(["symbol"],ascending=False)  # 按照股票代码从大到小排序HS300_symbol_array = HS300_array['symbol'].valuesHS300_symbol_list = list(HS300_symbol_array) # 转换为list类型才能进行后续处理# 采用pd.DataFrame建立二维数据表,初始化数据表,后续可以将数据存储到表中factor_matrix = pd.DataFrame([])factor_matrix["symbol"] = HS300_symbol_list# factor_matrix["earnings before interest and tax"] = -999    # 息税前收益增长率,很多数据都差不到,暂时不用这个因子factor_matrix["net_prof_yoy"] = -999    # 净利润同比增长率factor_matrix["oper_prof_yoy"] = -999   # 营业利润同比增长率factor_matrix["ttl_asset_yoy"] = -999   # 总资产同比增长率factor_matrix["net_cf_oper_yoy"] = -999 # 经营活动产生的现金流量净额同比增长率factor_matrix["net_asset_yoy"] = -999   # 净资产同比增长率factor_matrix["eps_bas_yoy"] = -999     # 基本每股收益同比增长率factor_matrix["roe_yoy"] = -999         # 净资产收益率同比增长率(摊薄)factor_matrix["ttl_prof_yoy"] = -999    # 利润总额同比增长率"""在这里所有的值都被定义为-999,这样做的目的是在读取数据的时候,防止有数据缺失或者出错,将默认值设置成现实数据中可能遇到的最小值。这样做的好处是在后续计算时可以自动将出错的数据的计算结果降为最差的结果,自动排除出错的数据集后面我们也可以这样做,先批量获取数据值,之后判断数据有无缺失,如果产生缺失,就逐个获取对应因子的数据,对于缺失的因子数据,采用-999进行填充"""day_time,hour_and_mins = str(now.strftime('%Y-%m-%d %H:%M:%S')).split(" ")  # 调用datetime函数获取最新时间six_months_ago = now - relativedelta(months=3) # 获取9个月前的时间作为后续查询数据的起始时间(主要是息税前收益增长率的计算需要T-1的数据,所有这里设置需要大于6个月)last_day_time,last_hour_and_mins = str(six_months_ago.strftime('%Y-%m-%d %H:%M:%S')).split(" ") # 转换时间格式到str# 求息税前收益增长率,这个没有现成的公式,需要手动计算,计算公式为息税前收益增长率=(本期息税前利润 – 上期息税前利润) / 上期息税前利润 × 100%# 采用dataframe格式获取数据,因为有一些数据无法获取到,所以运行起来特别慢,先注释掉,不采用这个参数"""for number in range(len(HS300_symbol_list))

这篇关于Python量化交易学习——Part6:多因子选股策略实战(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043484

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount