动手学深度学习29 残差网络ResNet

2024-06-08 20:36

本文主要是介绍动手学深度学习29 残差网络ResNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动手学深度学习29 残差网络ResNet

  • ResNet
  • 代码
    • ReLU的两种调用
      • 1. 使用 `torch.nn.ReLU` 模块
      • 2. 使用 `torch.nn.functional.relu` 函数
      • 总结
  • QA
  • 29.2 ResNet 为什么能训练处1000层的模型
  • ResNet的梯度计算
    • 怎么处理梯度消失的
  • QA

ResNet

在这里插入图片描述

更复杂模型包含小模型,不一定改进,但是加更深的层更复杂的模型至少不会变差。
在这里插入图片描述
复杂模型包含小模型,当要新加的层没有学到任何东西的时候,模型仍旧是可以学到前面层已经学到了的知识。可以认为是嵌入了小网络,允许先学习小网络。
在这里插入图片描述
从vgg过来。1*1卷积是为了改变通道数,和ResNet块输出的通道数保持一致,这样能做对应位置元素加法。
在这里插入图片描述
核心:加了一个加法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

152个卷积层。层数越高精度越高。34个卷积层用的比较多。刷榜经常用152【实际使用很少,训练太贵】
在这里插入图片描述
ResNet的思想 Residual Connections(残差连接)当前经常使用,例如 bert, transformer。

不管再深,总是先训练好小网络,再往深层训练。
在这里插入图片描述

代码

用了比较大的输入。调优ResNet–把输入搞小或者调小config?

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)# 只传输入输出通道数 不设置使用残差连接 不改变高宽
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
# stride 不传参 默认为1
print(Y.shape)  # torch.Size([4, 3, 6, 6])# stride=2 高宽减半 输出通道数加倍
blk = Residual(3,6, use_1x1conv=True, strides=2)
print(blk(X).shape)  # torch.Size([4, 6, 3, 3])# 设置第一个网络块 7*7卷积 stride=2 3*3池化层 stride=2  高宽降低4倍
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 残差块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blkb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))# 用了比较大的输入数据 高宽224 VGG用的是96高宽
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
torch.Size([4, 3, 6, 6])
torch.Size([4, 6, 3, 3])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 128, 28, 28])
Sequential output shape:	 torch.Size([1, 256, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 512, 1, 1])
Flatten output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])
loss 0.012, train acc 0.997, test acc 0.913
1557.1 examples/sec on cuda:0

在这里插入图片描述

d2l.load_data_fashion_mnist(batch_size, resize=224)
loss 0.027, train acc 0.993, test acc 0.876
354.8 examples/sec on cuda:0

在这里插入图片描述

ReLU的两种调用

在 PyTorch 中,可以通过多种方式调用 ReLU(Rectified Linear Unit)激活函数。以下是几种常见的方法:

1. 使用 torch.nn.ReLU 模块

torch.nn.ReLU 是一个 PyTorch 模块,可以直接在模型中作为层来使用。

import torch
import torch.nn as nn# 创建一个 ReLU 模块实例
relu = nn.ReLU()# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])# 应用 ReLU 激活函数
output_tensor = relu(input_tensor)
print(output_tensor)

2. 使用 torch.nn.functional.relu 函数

torch.nn.functional.relu 是一个函数,可以直接应用于张量。这在编写自定义前向传播方法时非常有用。

import torch
import torch.nn.functional as F# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])# 应用 ReLU 激活函数
output_tensor = F.relu(input_tensor)
print(output_tensor)

总结

  • torch.nn.ReLU:作为模块使用,适合在构建模型时作为层的一部分。
  • torch.nn.functional.relu:作为函数使用,适合在自定义的前向传播方法中调用。

QA

1 lenet batch_size > 1000 大部分图片都是相似的,影响收敛精度。
2 当f(x)=x+g(x)时,如果x的效果已经很好,那么g(x)训练可能拿不到梯度,做梯度反传的时候,梯度会是一个很小的值,那么ResNet在做更深的网络的时候,不会让模型变得更坏,一般会变好。
3 绿色线-cos学习率 【效果挺好】 调参简单–调个最大值最小值。
在这里插入图片描述
4 残差怎么理解
layer2在layer1的基础上训练一些误差,在layer1的基础上做叠加。底层网络没有fit好的东西,加深的网络继续去fit。
在这里插入图片描述
5 * 解包裹传递参数 把list列表参数解包裹传参
6 两个BN有自己的参数要学 参数不一样
7 nn.ReLU(inplace=True) 原地更新参数 省一点内存
8 输入尺寸的确定,是由数据和框架确定?
9 当训练数据中加入了大量的噪音,测试精度会大于训练精度,在实际使用中 经常测试精度会大于训练精度。
达不到100%识别,本身技术水平达不到+数据集也会有标错的
10 不能假设数据集是完全正确的。还有数据人本身都无法分辨–hardcase。关心数据里面的误差。比较容易的case模型很容易训练好。

29.2 ResNet 为什么能训练处1000层的模型

https://www.bilibili.com/video/BV1554y157E3/?spm_id_from=autoNext&vd_source=eb04c9a33e87ceba9c9a2e5f09752ef8

ResNet的梯度计算

避免梯度消失:把乘法变加法。

怎么处理梯度消失的

假设省略loss, 希望偏y偏w不要很小,学习的不要很慢。
把网络加深,加一些层。
梯度怎么展开的–链式法则
导数和真实值预测值的区别是有一定关系的,预测比较好的情况下,导数会很小,做乘法后整体梯度会比原来梯度小很多。
假设残差网络为y" , 当g(x)的梯度很小的时候,加和的梯度也会比原来很小。大数+小数=大数 大数*小数=小数。当靠近底部的层,梯度会很小,避免梯度消失。
靠近数据端的w是很难训练的,由于有跳转,在训练一开始的时候,靠近数据端的网络就会拿到比较大的梯度。
在这里插入图片描述

QA

1 在靠近输入的学习率设大一些 靠近输出的lr学习率设小一些 可以缓解梯度消失的问题,但是调数比较难【设多大多小】。当超过浮点数的精度,计算会出问题, 小到很小梯度会为0, 精度fp16问题更明显一些。残差连接不需要调太多的东西。
2 梯度是累乘的, 深层的网络,梯度值和误差值有关,梯度回传越往网络底层会慢慢吸收掉误差,误差会越小。

这篇关于动手学深度学习29 残差网络ResNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043237

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用