动手学深度学习29 残差网络ResNet

2024-06-08 20:36

本文主要是介绍动手学深度学习29 残差网络ResNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动手学深度学习29 残差网络ResNet

  • ResNet
  • 代码
    • ReLU的两种调用
      • 1. 使用 `torch.nn.ReLU` 模块
      • 2. 使用 `torch.nn.functional.relu` 函数
      • 总结
  • QA
  • 29.2 ResNet 为什么能训练处1000层的模型
  • ResNet的梯度计算
    • 怎么处理梯度消失的
  • QA

ResNet

在这里插入图片描述

更复杂模型包含小模型,不一定改进,但是加更深的层更复杂的模型至少不会变差。
在这里插入图片描述
复杂模型包含小模型,当要新加的层没有学到任何东西的时候,模型仍旧是可以学到前面层已经学到了的知识。可以认为是嵌入了小网络,允许先学习小网络。
在这里插入图片描述
从vgg过来。1*1卷积是为了改变通道数,和ResNet块输出的通道数保持一致,这样能做对应位置元素加法。
在这里插入图片描述
核心:加了一个加法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

152个卷积层。层数越高精度越高。34个卷积层用的比较多。刷榜经常用152【实际使用很少,训练太贵】
在这里插入图片描述
ResNet的思想 Residual Connections(残差连接)当前经常使用,例如 bert, transformer。

不管再深,总是先训练好小网络,再往深层训练。
在这里插入图片描述

代码

用了比较大的输入。调优ResNet–把输入搞小或者调小config?

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)# 只传输入输出通道数 不设置使用残差连接 不改变高宽
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
# stride 不传参 默认为1
print(Y.shape)  # torch.Size([4, 3, 6, 6])# stride=2 高宽减半 输出通道数加倍
blk = Residual(3,6, use_1x1conv=True, strides=2)
print(blk(X).shape)  # torch.Size([4, 6, 3, 3])# 设置第一个网络块 7*7卷积 stride=2 3*3池化层 stride=2  高宽降低4倍
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 残差块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blkb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))# 用了比较大的输入数据 高宽224 VGG用的是96高宽
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
torch.Size([4, 3, 6, 6])
torch.Size([4, 6, 3, 3])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 128, 28, 28])
Sequential output shape:	 torch.Size([1, 256, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 512, 1, 1])
Flatten output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])
loss 0.012, train acc 0.997, test acc 0.913
1557.1 examples/sec on cuda:0

在这里插入图片描述

d2l.load_data_fashion_mnist(batch_size, resize=224)
loss 0.027, train acc 0.993, test acc 0.876
354.8 examples/sec on cuda:0

在这里插入图片描述

ReLU的两种调用

在 PyTorch 中,可以通过多种方式调用 ReLU(Rectified Linear Unit)激活函数。以下是几种常见的方法:

1. 使用 torch.nn.ReLU 模块

torch.nn.ReLU 是一个 PyTorch 模块,可以直接在模型中作为层来使用。

import torch
import torch.nn as nn# 创建一个 ReLU 模块实例
relu = nn.ReLU()# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])# 应用 ReLU 激活函数
output_tensor = relu(input_tensor)
print(output_tensor)

2. 使用 torch.nn.functional.relu 函数

torch.nn.functional.relu 是一个函数,可以直接应用于张量。这在编写自定义前向传播方法时非常有用。

import torch
import torch.nn.functional as F# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])# 应用 ReLU 激活函数
output_tensor = F.relu(input_tensor)
print(output_tensor)

总结

  • torch.nn.ReLU:作为模块使用,适合在构建模型时作为层的一部分。
  • torch.nn.functional.relu:作为函数使用,适合在自定义的前向传播方法中调用。

QA

1 lenet batch_size > 1000 大部分图片都是相似的,影响收敛精度。
2 当f(x)=x+g(x)时,如果x的效果已经很好,那么g(x)训练可能拿不到梯度,做梯度反传的时候,梯度会是一个很小的值,那么ResNet在做更深的网络的时候,不会让模型变得更坏,一般会变好。
3 绿色线-cos学习率 【效果挺好】 调参简单–调个最大值最小值。
在这里插入图片描述
4 残差怎么理解
layer2在layer1的基础上训练一些误差,在layer1的基础上做叠加。底层网络没有fit好的东西,加深的网络继续去fit。
在这里插入图片描述
5 * 解包裹传递参数 把list列表参数解包裹传参
6 两个BN有自己的参数要学 参数不一样
7 nn.ReLU(inplace=True) 原地更新参数 省一点内存
8 输入尺寸的确定,是由数据和框架确定?
9 当训练数据中加入了大量的噪音,测试精度会大于训练精度,在实际使用中 经常测试精度会大于训练精度。
达不到100%识别,本身技术水平达不到+数据集也会有标错的
10 不能假设数据集是完全正确的。还有数据人本身都无法分辨–hardcase。关心数据里面的误差。比较容易的case模型很容易训练好。

29.2 ResNet 为什么能训练处1000层的模型

https://www.bilibili.com/video/BV1554y157E3/?spm_id_from=autoNext&vd_source=eb04c9a33e87ceba9c9a2e5f09752ef8

ResNet的梯度计算

避免梯度消失:把乘法变加法。

怎么处理梯度消失的

假设省略loss, 希望偏y偏w不要很小,学习的不要很慢。
把网络加深,加一些层。
梯度怎么展开的–链式法则
导数和真实值预测值的区别是有一定关系的,预测比较好的情况下,导数会很小,做乘法后整体梯度会比原来梯度小很多。
假设残差网络为y" , 当g(x)的梯度很小的时候,加和的梯度也会比原来很小。大数+小数=大数 大数*小数=小数。当靠近底部的层,梯度会很小,避免梯度消失。
靠近数据端的w是很难训练的,由于有跳转,在训练一开始的时候,靠近数据端的网络就会拿到比较大的梯度。
在这里插入图片描述

QA

1 在靠近输入的学习率设大一些 靠近输出的lr学习率设小一些 可以缓解梯度消失的问题,但是调数比较难【设多大多小】。当超过浮点数的精度,计算会出问题, 小到很小梯度会为0, 精度fp16问题更明显一些。残差连接不需要调太多的东西。
2 梯度是累乘的, 深层的网络,梯度值和误差值有关,梯度回传越往网络底层会慢慢吸收掉误差,误差会越小。

这篇关于动手学深度学习29 残差网络ResNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043237

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx