本文主要是介绍单调递增最长子序列 O(nlogn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
单调递增最长子序列
- 描述
- 求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4- 输入
- 第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000 输出 - 输出字符串的最长递增子序列的长度 样例输入
-
3 aaa ababc abklmncdefg
样例输出 -
1 3 7
来源 - 经典题目 上传者
- iphxer
这一题的数据规模最大可以达到10000,经典的O(n^2)的动态规划算法明显会超时。我们需要寻找更好的方法来解决最长上升子序列问题。
先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1到i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{1, F[j] + 1} (j = 1, 2, ..., i - 1, 且A[j] < A[i])。
现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < i (2)A[x] < A[y] < A[i] (3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)。
注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]与D[len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。
在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!
这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。
#include<stdio.h> #include<iostream> #include<string.h> using namespace std; int D[10000]; int binarysearch(int low,int high,int m)//二分查找 {int mid;mid=(low+high)/2;while(low<=high){if(D[mid]<m&&D[mid+1]>=m)return mid;elseif(D[mid]<m)low=mid+1;elsehigh=mid-1;mid=(low+high)/2;} return mid; } int main() {char a[10000];int kase,n,i,j,k,len;cin>>kase;while(kase--){cin>>a+1;D[1]=a[1];len=1;n=strlen(a+1);for(i=2;i<=n;i++){if(a[i]>D[len]){len++;D[len]=a[i];}else{j=binarysearch(1,len,a[i]);k=j+1;D[k]=a[i];} } cout<<len<<endl; }return 0; }
- 第一行一个整数0<n<20,表示有n个字符串要处理
这篇关于单调递增最长子序列 O(nlogn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!