[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?

本文主要是介绍[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.何为背包问题?
  • 1.模板 背包
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.分割等和子集
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


0.何为背包问题?

  • 背包问题:有限制条件下的"组合问题"

  • 你有一个背包,地上有一堆物品,挑选一些物品放入背包中

    • 问:最大能挑选出来的价值是多少?
  • 限制因素

    • 物品的属性:价值等
    • 背包的属性:容量大小等
    • 背包是要求必装满还是不必装满?
      请添加图片描述
  • 当研究一个问题,出现选或者不选的情况,思路就可以往01背包上靠

  • 注意:背包问题是必须要掌握的算法问题


1.模板 背包

1.题目链接

  • [模板] 背包

2.算法原理详解

  • 注意:01背包问题是所有背包问题的基础,此处的分析思路,可以用到很多题里面
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]:从前i个物品中选,所有选法中,能挑选出来的最大价值 ×
        • 无法得知背包容量
      • 不要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积不超过j,所有选法中,能挑选出来的最大价值
      • 要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积恰好等于j,所有选法中,能挑选出来的最大价值
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • 不要求恰好装满:j - v[i] >= 0是为了确保背包此时容量足够塞下当前物品
        请添加图片描述

      • 要求恰好装满dp[i][j] == -1表示没有这种情况,即此时总体积凑不到j
        请添加图片描述

    • 初始化:

      • 不要求恰好装满vector<vector<int>> dp(n + 1, vector<int>(V + 1))
      • 要求恰好装满:第一行除第一个位置,其余都为-1
    • 确定填表顺序:从上往下

    • 确定返回值:

      • 不要求恰好装满dp[n][V]
      • 要求恰好装满dp[n][V] == -1 ? 0 : dp[n][V]
  • 滚动数组优化空间
    • 每次填值,只依赖上一行的值

      • 所以,理论上只需要两行一维数组,就可以解决问题
    • 可以一个一维数组就优化掉此问题

      • 但是如果从左往右遍历数组,会影响动态规划填值
        • 因为原本的填值过程,会依赖左上方的值
      • 此时,只需要从右往左遍历该数组,就不会影响动态规划的规程
        请添加图片描述

      请添加图片描述

    • 操作

      • 删除所有的横坐标
      • 修改一下j的遍历顺序
    • 注意不要去强行解释优化后的妆台表示以及状态转移方程,费时费力还没啥意义


3.代码实现

// v1.0
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<vector<int>> dp(n + 1, vector<int>(V + 1));// Q1for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i]){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << dp[n][V] << endl;// Q2dp.resize(n + 1, vector<int>(V + 1));for(int i = 1; i <= V; i++){dp[0][i] = -1;}for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i - 1][j - v[i]] != -1){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}
-----------------------------------------------------------------------------
// v2.0 滚动数组优化
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<int> dp(V + 1);// Q1for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[V] << endl;// Q2dp.resize(V + 1, 0);for(int i = 1; i <= V; i++){dp[i] = -1;}for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){if(dp[j - v[i]] != -1){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}}cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

2.分割等和子集

1.题目链接

  • 分割等和子集

2.算法原理详解

  • 问题转化:在数组中选择一些数出来,让这些数的和等于sum / 2 --> 01背包
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]:从前i个数中****,所有的选法中,能否凑成j这个数
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]]
        请添加图片描述
    • 初始化:

      • 多开一行及一列虚拟结点
        请添加图片描述
    • 确定填表顺序:从上往下

    • 确定返回值:dp[n][sum / 2]

  • 滚动数字优化同[模板] 背包

3.代码实现

// v1.0
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<vector<bool>> dp(n + 1, vector<bool>(aim + 1));// Initfor(int i = 1; i <= n; i++){dp[i][0] = true;}// DPfor(int i = 1; i <= n; i++){for(int j = 1; j <= aim; j++){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]){dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[n][aim];
}
----------------------------------------------------------------------
// v2.0 滚动数组优化
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<bool> dp(aim + 1);                dp[0] = true;// DPfor(int i = 1; i <= n; i++){for(int j = aim; j >= nums[i - 1]; j--){dp[j] = dp[j] || dp[j - nums[i - 1]];}}return dp[aim];
}

这篇关于[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041529

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用