[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?

本文主要是介绍[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0.何为背包问题?
  • 1.模板 背包
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.分割等和子集
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


0.何为背包问题?

  • 背包问题:有限制条件下的"组合问题"

  • 你有一个背包,地上有一堆物品,挑选一些物品放入背包中

    • 问:最大能挑选出来的价值是多少?
  • 限制因素

    • 物品的属性:价值等
    • 背包的属性:容量大小等
    • 背包是要求必装满还是不必装满?
      请添加图片描述
  • 当研究一个问题,出现选或者不选的情况,思路就可以往01背包上靠

  • 注意:背包问题是必须要掌握的算法问题


1.模板 背包

1.题目链接

  • [模板] 背包

2.算法原理详解

  • 注意:01背包问题是所有背包问题的基础,此处的分析思路,可以用到很多题里面
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]:从前i个物品中选,所有选法中,能挑选出来的最大价值 ×
        • 无法得知背包容量
      • 不要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积不超过j,所有选法中,能挑选出来的最大价值
      • 要求恰好装满
        • dp[i][j]:从前i个物品中挑选,总体积恰好等于j,所有选法中,能挑选出来的最大价值
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • 不要求恰好装满:j - v[i] >= 0是为了确保背包此时容量足够塞下当前物品
        请添加图片描述

      • 要求恰好装满dp[i][j] == -1表示没有这种情况,即此时总体积凑不到j
        请添加图片描述

    • 初始化:

      • 不要求恰好装满vector<vector<int>> dp(n + 1, vector<int>(V + 1))
      • 要求恰好装满:第一行除第一个位置,其余都为-1
    • 确定填表顺序:从上往下

    • 确定返回值:

      • 不要求恰好装满dp[n][V]
      • 要求恰好装满dp[n][V] == -1 ? 0 : dp[n][V]
  • 滚动数组优化空间
    • 每次填值,只依赖上一行的值

      • 所以,理论上只需要两行一维数组,就可以解决问题
    • 可以一个一维数组就优化掉此问题

      • 但是如果从左往右遍历数组,会影响动态规划填值
        • 因为原本的填值过程,会依赖左上方的值
      • 此时,只需要从右往左遍历该数组,就不会影响动态规划的规程
        请添加图片描述

      请添加图片描述

    • 操作

      • 删除所有的横坐标
      • 修改一下j的遍历顺序
    • 注意不要去强行解释优化后的妆台表示以及状态转移方程,费时费力还没啥意义


3.代码实现

// v1.0
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<vector<int>> dp(n + 1, vector<int>(V + 1));// Q1for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i]){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << dp[n][V] << endl;// Q2dp.resize(n + 1, vector<int>(V + 1));for(int i = 1; i <= V; i++){dp[0][i] = -1;}for(int i = 1; i <= n; i++){for(int j = 1; j <= V; j++){dp[i][j] = dp[i - 1][j];if(j >= v[i] && dp[i - 1][j - v[i]] != -1){dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);}}}cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;return 0;
}
-----------------------------------------------------------------------------
// v2.0 滚动数组优化
int main()
{int n = 0, V = 0;cin >> n >> V;vector<int> v(n + 1), w(n + 1);for(int i = 1; i <= n; i++){cin >> v[i] >> w[i];}vector<int> dp(V + 1);// Q1for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[V] << endl;// Q2dp.resize(V + 1, 0);for(int i = 1; i <= V; i++){dp[i] = -1;}for(int i = 1; i <= n; i++){for(int j = V; j >= v[i]; j--){if(dp[j - v[i]] != -1){dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}}cout << (dp[V] == -1 ? 0 : dp[V]) << endl;return 0;
}

2.分割等和子集

1.题目链接

  • 分割等和子集

2.算法原理详解

  • 问题转化:在数组中选择一些数出来,让这些数的和等于sum / 2 --> 01背包
  • 思路
    • 确定状态表示 -> dp[i][j]的含义

      • dp[i]j]:从前i个数中****,所有的选法中,能否凑成j这个数
    • 推导状态转移方程:根据最后一个位置的情况,分情况讨论

      • dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]]
        请添加图片描述
    • 初始化:

      • 多开一行及一列虚拟结点
        请添加图片描述
    • 确定填表顺序:从上往下

    • 确定返回值:dp[n][sum / 2]

  • 滚动数字优化同[模板] 背包

3.代码实现

// v1.0
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<vector<bool>> dp(n + 1, vector<bool>(aim + 1));// Initfor(int i = 1; i <= n; i++){dp[i][0] = true;}// DPfor(int i = 1; i <= n; i++){for(int j = 1; j <= aim; j++){dp[i][j] = dp[i - 1][j];if(j >= nums[i - 1]){dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]];}}}return dp[n][aim];
}
----------------------------------------------------------------------
// v2.0 滚动数组优化
bool canPartition(vector<int>& nums) 
{int n = nums.size(), sum = 0;for(auto& x : nums){sum += x;}if(sum % 2) return false;int aim = sum / 2;vector<bool> dp(aim + 1);                dp[0] = true;// DPfor(int i = 1; i <= n; i++){for(int j = aim; j >= nums[i - 1]; j--){dp[j] = dp[j] || dp[j - nums[i - 1]];}}return dp[aim];
}

这篇关于[Algorithm][动态规划][01背包问题][模板 背包][分割等和子集]详细讲解 +何为背包问题?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041529

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�