力扣hot100:295. 数据流的中位数(两个优先队列维护中位数)

2024-06-08 03:12

本文主要是介绍力扣hot100:295. 数据流的中位数(两个优先队列维护中位数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode:295. 数据流的中位数
在这里插入图片描述
这个题目最快的解法应该是维护中位数,每插入一个数都能快速得到一个中位数。
根据数据范围,我们应当实现一个 O ( n l o g n ) O(nlogn) O(nlogn)的算法。

1、超时—插入排序

使用数组存储,维持数组有序,当插入一个元素时使用插入排序维持数组有序,这种方式无异于使用插入排序,时间复杂度不达标。

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),由于每一个数都会被插入一次,插入一次的时间为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
    在这里插入图片描述
class MedianFinder {
public:MedianFinder() {}void addNum(int num) {nums.emplace_back(num);for(int i = nums.size() - 1; i >= 1; -- i){if(nums[i] >= nums[i - 1]) break;swap(nums[i], nums[i-1]);}}double findMedian() {int mid = nums.size() / 2;if(nums.size() % 2 == 1)return 1.0 * nums[mid];return 1.0 * (nums[mid] + nums[mid - 1]) / 2;}
private:vector<int> nums;
};

2、中位数为根的BST

如果我们使用二分查找,找到新加入元素的位置,是否可行呢?答案是可行的,但是使用数组存储并不能很快更新。

  • 使用高效率的树形二分查找,查找和插入效率很高,可以使用AVL、红黑树、B树等
  • 但这里要求的是能快速取得中位数,普通的树形二分查找就不行了,不能通过下标快速找到。因此只能使用数组二分查找,但是插入效率又不高

根据上面的讨论,我们发现,如果能每次插入维护的一个二叉搜索树是一个完全二叉树,根附近就是中位数,并且插入操作只需要 O ( l o g n ) O(logn) O(logn)的时间,那就太好了。

这样我们就可以思考,能不能实现这样的数据结构:

  • 对于任何一段区间,满足根是中位数,且左子树小于根,根小于右子树的一个二叉搜索树
    • 我们规定偶数情况下,两个数小者作为根。如下图:
      在这里插入图片描述

如果能实现这样的数据结构,就刚好和题目要求实现“数据结构”这一说法匹配了!
(我感觉是能实现的,但是时间问题,我就先不写了,有兴趣的同学可以自行研究)

3、优先队列

维护两个优先队列,一个存储比中位数小于的最大堆,一个存储比中位数大的最小堆(包括等于的,即最小堆里面的元素可能会比最大堆多一个)。那么我们就将数分为了两堆,很显然中位数能通过某种方式从两个优先队列队头取到。

并且很显然,维护这两个堆也很容易,当需要插入一个数时,我们只需要比较两个堆队头就可以选择插入的堆。并且为了维持两个堆队头是中位数

  • 当元素数为偶数时,插入一个元素,如果插入到左边,则最后中位数会出现在左边,我们将其放入右边。如果插入到右边则直接结束
  • 当元素数为奇数,插入一个元素,如果插入到左边则结束,如果插入到右边则右边多一个需要放一个放到左边。
  • 不管怎么放,根据优先队列的性质,队头都是最值,即根据中位数将区间分为两段,通过优先队列快速进行维护,左右的边界值。

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),一次插入时间复杂度 O ( l o g n ) O(logn) O(logn)
空间复杂度: O ( n ) O(n) O(n)

class MedianFinder {
public:MedianFinder() {left.push(-0x3f3f3f3f);right.push(0x3f3f3f3f);}void addNum(int num) {++n;//先插入if(num >= right.top()){right.push(num);}else left.push(num);//再移动if(left.size() > right.size()){right.push(left.top());left.pop();}else{if(right.size() == left.size() + 2){left.push(right.top());right.pop();}}return;}double findMedian() {if(n & 1){//n & 1 == 1 即奇数return right.top();}return (left.top() + right.top()) / 2.0;}
private:priority_queue<int, vector<int>, less<int>> left;//左区间priority_queue<int, vector<int>, greater<int>> right;//右区间int n = 0;
};

这篇关于力扣hot100:295. 数据流的中位数(两个优先队列维护中位数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041065

相关文章

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2431 poj 3253 优先队列的运用

poj 2431: 题意: 一条路起点为0, 终点为l。 卡车初始时在0点,并且有p升油,假设油箱无限大。 给n个加油站,每个加油站距离终点 l 距离为 x[i],可以加的油量为fuel[i]。 问最少加几次油可以到达终点,若不能到达,输出-1。 解析: 《挑战程序设计竞赛》: “在卡车开往终点的途中,只有在加油站才可以加油。但是,如果认为“在到达加油站i时,就获得了一

poj3750约瑟夫环,循环队列

Description 有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。 Input 第一行输入小孩的人数N(N<=64) 接下来每行输入一个小孩的名字(人名不超过15个字符) 最后一行输入W,S (W < N),用

POJ2010 贪心优先队列

c头牛,需要选n头(奇数);学校总共有f的资金, 每头牛分数score和学费cost,问合法招生方案中,中间分数(即排名第(n+1)/2)最高的是多少。 n头牛按照先score后cost从小到大排序; 枚举中间score的牛,  预处理左边与右边的最小花费和。 预处理直接优先队列贪心 public class Main {public static voi

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

Java并发编程之——BlockingQueue(队列)

一、什么是BlockingQueue BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种: 1. 当队列满了的时候进行入队列操作2. 当队列空了的时候进行出队列操作123 因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空

深度优先(DFS)和广度优先(BFS)——算法

深度优先 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访