LLM的基础模型7:Positional Encoding

2024-06-08 02:52

本文主要是介绍LLM的基础模型7:Positional Encoding,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于具身智能感兴趣的请移步具身智能专栏。技术宅麻烦死磕AI架构设计。

位置编码

在自然语音处理器中,输入的单词或者Token序列的顺序及其在句子中的位置非常重要。毕竟若单词重排序,整个句子含义会改变。

在实现 NLP的解决方案时,RNN具有处理序列顺序的内置机制。然而,基于Transformer的大模型不使用递归或卷积,而是将每个数据视为独立于其他的数据。因此,位置信息需要被显式添加到模型中,以保留有关句子中单词顺序的信息,而位置编码则是其中的解决方案。

位置编码描述序列中实体的位置或位置,以便为每个位置分配唯一的表示形式。在Transformer模型中,不使用单个数字(例如索引值)来表示项目的位置的原因有很多。对于长序列,索引的数值会变大。若将索引值归一化为介于 0 和 1 之间,则可能会对可变长度序列产生问题。

Transformer使用智能位置编码方案,其中每个位置/索引都映射到一个向量。因此每个输入经过位置编码层的输出是一个向量。整个序列就组成了一个矩阵,其中矩阵的每一行表示序列的一个编码对象。下图显示了仅对位置信息进行编码的矩阵示例。

上面的例子序列长度为4,模型的编码的维度为d维

在继续往下之前,先帮助大家温习下正弦函数和余弦函数,两者的取值范围是 [-1,+1]。该波形的频率是一秒钟内完成的周期数。波长是波形重复的距离。不同波形的波长和频率如下图所示。

Transformer中的位置编码算法如下。这里假设有一个长度为L的输入序列,并且需要求出kth对象在此序列中的位置编码。偶数位置对应于正弦函数,奇数位置对应于余弦函数。

这里k代表某个对象在序列中的位置 0≤k<L/2;d代表单词嵌入(embedding)之后的向量维度;P(k,j)代表位置函数;n代表超参数,最初的设置为10000;i为映射使用的索引,0≤i<d/2。

上图是从侧面来理解这种编码。还是刚才的例子,通过上面的公式可以求出每个位置的数值,每一行即为某个单词的位置编码。

其实这个位置编码是固定的,在已经知道L,n和d的前提下。因此可以画出可视化的位置编码矩阵图。

这里假定n=10000,L=100,d=512,颜色代表着1到-1的取值

下面为不同模型的位置编码矩阵图,当然最新的还出现了一种CoPE:

位置编码真的有用?

有篇论文做了一些实验,试图搞清楚位置嵌入到底学到了什么。

研究小组的目的在于搞清楚预训练的 Transformer 位置嵌入的隐含含义。Transformer 编码器在类似掩码语言建模(Bert)中能有效的学习到局部的位置信息。用于自回归语言建模的 Transformer 解码器实际上学习的是绝对位置。对预训练位置嵌入的实证实验验证了上面的假设。

研究还表明具有不同模型架构和不同训练目标的NLP任务以不同的方式利用位置信息。因此根据目标NLP任务中选择合适的编码函数将成为后续需要持续关注的地方。

这篇关于LLM的基础模型7:Positional Encoding的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041029

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee