Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读

2024-06-07 21:12

本文主要是介绍Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paper:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

official implementation:GitHub - whai362/PVT: Official implementation of PVT series

存在的问题

现有的 Vision Transformer (ViT) 主要设计用于图像分类任务,难以直接用于像素级密集预测任务,如目标检测和分割。这是因为存在以下问题

  1. 低分辨率输出:传统的Vision Transformer(ViT)在处理密集预测任务(如目标检测和语义分割)时,输出分辨率较低,难以获得高质量的像素级别预测。
  2. 高计算和内存开销:ViT在处理大尺寸输入图像时,计算和内存开销较高,限制了其在实际应用中的效率。

本文的创新点

为了解决上述问题,作者提出了 Pyramid Vision Transformer (PVT), PVT结合了卷积神经网络的金字塔结构和Transformer的全局感受野,旨在克服传统Transformer在处理密集预测任务时遇到的分辨率低、计算和内存开销大的问题。它可以作为 CNN 骨干网络的替代品,用于多种下游任务,包括图像级预测和像素级密集预测。具体包括:

  1. 金字塔结构:PVT引入了金字塔结构,可以生成多尺度的特征图,这对于密集预测任务是有益的。
  2. 空间缩减注意力层(SRA):为了处理高分辨率特征图并减少计算/内存成本,作者设计了 SRA 层来替代传统的多头注意力 (MHA) 层。
  3. 纯Transformer骨干:PVT 是一个没有卷积的纯 Transformer 骨干网络,可以用于各种像素级密集预测任务,并与 DETR 结合构建了一个完全无需卷积的目标检测系统。

实际效果

  • PVT 在多个下游任务上进行了广泛的实验验证,包括图像分类、目标检测、实例和语义分割等,并与流行的 ResNets 和 ResNeXts 进行了比较。
  • 实验结果表明,在参数数量相当的情况下,PVT 在 COCO 数据集上使用 RetinaNet 作为检测器时,PVT-Small 模型达到了 40.4 的 AP(平均精度),超过了 ResNet50+RetinaNet(36.3 AP)4.1 个百分点。
  • PVT-Large 模型达到了 42.6 的 AP,比 ResNeXt101-64x4d 高出 1.6 个百分点,同时参数数量减少了 30%。
  • 这些结果表明 PVT 可以作为 CNN 骨干网络的一个有效的替代,用于像素级预测,并推动未来的研究。

方法介绍

Overall Architecture

PVT的整体结构如图3所示

和CNN backbone类似,PVT也有四个stage来生成不同尺度的特征图。所有stage都有一个相似的架构,包括一个patch embedding层和 \(L_i\) 个Transformer encoder层。

在第一个stage,给定大小为 \(H\times W\times 3\) 的输入图片,我们首先将其划分为 \(\frac{HW}{4^2}\) 个patch,每个大小为4x4x3。然后将展平的patch送入一个线性映射层得到大小为 \(\frac{HW}{4^2}\times C_1\) 的输出。然后将输出和位置编码一起进入有 \(L_1\) 层的Transformer encoder,得到的输出reshape成大小为 \(\frac{H}{4}\times \frac{W}{4}\times C_1\) 的特征图 \(F_1\)。同样的方式,以前一个stage的输出特征图作为输入,我们得到特征图 \(F_2,F_3,F_4\),相对于原始输入图片的步长分别为8,16,32。用了特征图金字塔 \(\{F_1,F_2,F_3,F_4\}\),我们的方法可以很容易地应用于大多数下游任务,包括图像分类、目标检测和语义分割。

Feature Pyramid for Transformer

和CNN backbone用不同stride的卷积来得到不同尺度特征图不同,PVT使用一个渐进式shrinking策略,通过patch embedding层来控制特征图的尺度。 

我们用 \(P_i\) 来表示第 \(i\) 个stage的patch size,在stage \(i\) 的开始,我们首先将输入特征图 \(F_{i-1}\in \mathbb{R}^{H_{i-1}\times W_{i-1}\times C_{i-1}}\) 均匀地划分成 \(\frac{H_{i-1}W_{i-1}}{P_i^2}\) 个patch,然后将每个patch展平并映射得到一个 \(C_i\) 维的embedding。在线性映射后,embedded patch的大小为 \(\frac{H_{i-1}}{P_i}\times \frac{W_{i-1}}{P_i}\times C_i\),其中宽高比输入小了 \(P_i\) 倍。

这样,我们就可以在每个stage灵活地调整特征图的尺度,从而将Transformer构建成金字塔结构。

Transforme Encoder

由于PVT需要处理高分辨率(stride-4)的特征图,我们提出了一种spatial-reduction attention(SRA)来替换encoder中传统的multi-head attention(MHA)。

和MHA类似,SRA的输入包括一个query \(Q\),一个key \(K\),一个value \(V\)。不同的是SRA在attention operation之前减小了 \(K\) 和 \(V\) 的大小,如图4所示,这大大减少了计算和内存的开销。

stage \(i\) 的SRA如下

其中 \(Concat(\cdot)\) 是拼接操作。\(W^{Q}_j\in \mathbb{R}^{C_i\times d_{head}},W^{K}_j\in \mathbb{R}^{C_i\times d_{head}},W^{V}_j\in \mathbb{R}^{C_i\times d_{head}},W^O\in \mathbb{R}^{C_i\times C_i}\) 是线性映射参数。\(N_i\) 是stage \(i\) 中attention层的head数量,所以每个head的维度(即\(d_{head}\))等于 \(\frac{C_i}{N_i}\)。\(SR(\cdot)\) 是降低输入序列(即 \(K\) 或 \(V\))空间维度的操作,如下:

其中 \(\mathbf{x}\in\mathbb{R}^{(H_iW_i)\times C_i}\) 表示一个输入序列,\(R_i\) 表示stage \(i\) 中attention层的reduction ratio。\(Reshape(\mathbf{x},R_i)\) 是将输入序列 \(\mathbf{x}\) reshape成大小为 \(\frac{H_iW_i}{R^2_i}\times (R^2_iC_i)\) 的序列的操作。\(W_S\in \mathbb{R}^{(R^2_iC_i)\times C_i}\) 是一个linear projection,它将输入序列的维度降低到 \(C_i\)。\(Norm(\cdot)\) 是layer normalization。和原始的Transformer一样,attention operation按下式计算

通过上述公式我们可以发现,MSA的计算/内存开销是MHA的 \(\frac{1}{R^2}\),因此MSA可以在有限的资源下处理更大的输入特征图或序列。

代码解析

见PVT v2的代码解析 PVT v2 原理与代码解析-CSDN博客

实验结果 

模型涉及到的一些超参总结如下:

  • \(P_i\):stage \(i\) 的patch size
  • \(C_i\):stage \(i\) 的输出通道数
  • \(L_i\):stage \(i\) 中的encoder层数
  • \(R_i\):stage \(i\) 中SRA的reduction ratio
  • \(N_i\):stage \(i\) 中SRA的head数量
  • \(E_i\):stage \(i\) 中FFN层的expansion ratio

作者设计了一系列的PVT模型,具体配置如表1

和其它SOTA模型在ImageNet的结果对比如表2所示

用RetinaNet上和其它backbone的结果对比如表3所示,可以看到PVT不同大小的模型与ResNet系列相比,参数更少精度更高。

在语义分割模型Semantic FPN上PVT也超越了对应的ResNet

这篇关于Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040315

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由