Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读

2024-06-07 21:12

本文主要是介绍Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paper:Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

official implementation:GitHub - whai362/PVT: Official implementation of PVT series

存在的问题

现有的 Vision Transformer (ViT) 主要设计用于图像分类任务,难以直接用于像素级密集预测任务,如目标检测和分割。这是因为存在以下问题

  1. 低分辨率输出:传统的Vision Transformer(ViT)在处理密集预测任务(如目标检测和语义分割)时,输出分辨率较低,难以获得高质量的像素级别预测。
  2. 高计算和内存开销:ViT在处理大尺寸输入图像时,计算和内存开销较高,限制了其在实际应用中的效率。

本文的创新点

为了解决上述问题,作者提出了 Pyramid Vision Transformer (PVT), PVT结合了卷积神经网络的金字塔结构和Transformer的全局感受野,旨在克服传统Transformer在处理密集预测任务时遇到的分辨率低、计算和内存开销大的问题。它可以作为 CNN 骨干网络的替代品,用于多种下游任务,包括图像级预测和像素级密集预测。具体包括:

  1. 金字塔结构:PVT引入了金字塔结构,可以生成多尺度的特征图,这对于密集预测任务是有益的。
  2. 空间缩减注意力层(SRA):为了处理高分辨率特征图并减少计算/内存成本,作者设计了 SRA 层来替代传统的多头注意力 (MHA) 层。
  3. 纯Transformer骨干:PVT 是一个没有卷积的纯 Transformer 骨干网络,可以用于各种像素级密集预测任务,并与 DETR 结合构建了一个完全无需卷积的目标检测系统。

实际效果

  • PVT 在多个下游任务上进行了广泛的实验验证,包括图像分类、目标检测、实例和语义分割等,并与流行的 ResNets 和 ResNeXts 进行了比较。
  • 实验结果表明,在参数数量相当的情况下,PVT 在 COCO 数据集上使用 RetinaNet 作为检测器时,PVT-Small 模型达到了 40.4 的 AP(平均精度),超过了 ResNet50+RetinaNet(36.3 AP)4.1 个百分点。
  • PVT-Large 模型达到了 42.6 的 AP,比 ResNeXt101-64x4d 高出 1.6 个百分点,同时参数数量减少了 30%。
  • 这些结果表明 PVT 可以作为 CNN 骨干网络的一个有效的替代,用于像素级预测,并推动未来的研究。

方法介绍

Overall Architecture

PVT的整体结构如图3所示

和CNN backbone类似,PVT也有四个stage来生成不同尺度的特征图。所有stage都有一个相似的架构,包括一个patch embedding层和 \(L_i\) 个Transformer encoder层。

在第一个stage,给定大小为 \(H\times W\times 3\) 的输入图片,我们首先将其划分为 \(\frac{HW}{4^2}\) 个patch,每个大小为4x4x3。然后将展平的patch送入一个线性映射层得到大小为 \(\frac{HW}{4^2}\times C_1\) 的输出。然后将输出和位置编码一起进入有 \(L_1\) 层的Transformer encoder,得到的输出reshape成大小为 \(\frac{H}{4}\times \frac{W}{4}\times C_1\) 的特征图 \(F_1\)。同样的方式,以前一个stage的输出特征图作为输入,我们得到特征图 \(F_2,F_3,F_4\),相对于原始输入图片的步长分别为8,16,32。用了特征图金字塔 \(\{F_1,F_2,F_3,F_4\}\),我们的方法可以很容易地应用于大多数下游任务,包括图像分类、目标检测和语义分割。

Feature Pyramid for Transformer

和CNN backbone用不同stride的卷积来得到不同尺度特征图不同,PVT使用一个渐进式shrinking策略,通过patch embedding层来控制特征图的尺度。 

我们用 \(P_i\) 来表示第 \(i\) 个stage的patch size,在stage \(i\) 的开始,我们首先将输入特征图 \(F_{i-1}\in \mathbb{R}^{H_{i-1}\times W_{i-1}\times C_{i-1}}\) 均匀地划分成 \(\frac{H_{i-1}W_{i-1}}{P_i^2}\) 个patch,然后将每个patch展平并映射得到一个 \(C_i\) 维的embedding。在线性映射后,embedded patch的大小为 \(\frac{H_{i-1}}{P_i}\times \frac{W_{i-1}}{P_i}\times C_i\),其中宽高比输入小了 \(P_i\) 倍。

这样,我们就可以在每个stage灵活地调整特征图的尺度,从而将Transformer构建成金字塔结构。

Transforme Encoder

由于PVT需要处理高分辨率(stride-4)的特征图,我们提出了一种spatial-reduction attention(SRA)来替换encoder中传统的multi-head attention(MHA)。

和MHA类似,SRA的输入包括一个query \(Q\),一个key \(K\),一个value \(V\)。不同的是SRA在attention operation之前减小了 \(K\) 和 \(V\) 的大小,如图4所示,这大大减少了计算和内存的开销。

stage \(i\) 的SRA如下

其中 \(Concat(\cdot)\) 是拼接操作。\(W^{Q}_j\in \mathbb{R}^{C_i\times d_{head}},W^{K}_j\in \mathbb{R}^{C_i\times d_{head}},W^{V}_j\in \mathbb{R}^{C_i\times d_{head}},W^O\in \mathbb{R}^{C_i\times C_i}\) 是线性映射参数。\(N_i\) 是stage \(i\) 中attention层的head数量,所以每个head的维度(即\(d_{head}\))等于 \(\frac{C_i}{N_i}\)。\(SR(\cdot)\) 是降低输入序列(即 \(K\) 或 \(V\))空间维度的操作,如下:

其中 \(\mathbf{x}\in\mathbb{R}^{(H_iW_i)\times C_i}\) 表示一个输入序列,\(R_i\) 表示stage \(i\) 中attention层的reduction ratio。\(Reshape(\mathbf{x},R_i)\) 是将输入序列 \(\mathbf{x}\) reshape成大小为 \(\frac{H_iW_i}{R^2_i}\times (R^2_iC_i)\) 的序列的操作。\(W_S\in \mathbb{R}^{(R^2_iC_i)\times C_i}\) 是一个linear projection,它将输入序列的维度降低到 \(C_i\)。\(Norm(\cdot)\) 是layer normalization。和原始的Transformer一样,attention operation按下式计算

通过上述公式我们可以发现,MSA的计算/内存开销是MHA的 \(\frac{1}{R^2}\),因此MSA可以在有限的资源下处理更大的输入特征图或序列。

代码解析

见PVT v2的代码解析 PVT v2 原理与代码解析-CSDN博客

实验结果 

模型涉及到的一些超参总结如下:

  • \(P_i\):stage \(i\) 的patch size
  • \(C_i\):stage \(i\) 的输出通道数
  • \(L_i\):stage \(i\) 中的encoder层数
  • \(R_i\):stage \(i\) 中SRA的reduction ratio
  • \(N_i\):stage \(i\) 中SRA的head数量
  • \(E_i\):stage \(i\) 中FFN层的expansion ratio

作者设计了一系列的PVT模型,具体配置如表1

和其它SOTA模型在ImageNet的结果对比如表2所示

用RetinaNet上和其它backbone的结果对比如表3所示,可以看到PVT不同大小的模型与ResNet系列相比,参数更少精度更高。

在语义分割模型Semantic FPN上PVT也超越了对应的ResNet

这篇关于Pyramid Vision Transformer, PVT(ICCV 2021)原理与代码解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040315

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P