RAG 查询检索模块 - 检索 - Pinecone 混合检索方案

2024-06-07 15:04

本文主要是介绍RAG 查询检索模块 - 检索 - Pinecone 混合检索方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

虽然向量检索有助于检索给定查询的语义相关块,但它有时在匹配特定关键字词方面缺乏准确性。

为了解决这个问题,混合检索是一种解决方案。该策略充分利用了矢量搜索和关键字搜索等不同检索技术的优势,并将它们智能地组合在一起。使用这种混合方法,您仍然可以匹配相关的关键字,同时保持对查询意图的控制。 混合搜索的案例,可以参考 Pinecone 的入门指南

Pinecone 混合检索方案

该博客讨论了混合搜索的概念和实现,混合搜索结合了矢量搜索(密集检索)和传统搜索方法的优势,以提高信息检索性能,尤其是在缺乏用于微调模型的特定领域数据的情况下。

  • 矢量搜索与传统搜索: 当使用特定领域的数据集对模型进行微调时,矢量搜索在检索相关信息方面表现出色。然而,由于缺乏经过微调的模型,矢量搜索在处理“域外”任务时显得力不从心。传统的搜索方法,如 BM25,可以处理新的领域,但在提供类似人类的智能检索方面能力有限。

混合搜索解决方案: 该博客介绍了一种将密集(向量)和稀疏(传统)搜索方法结合为混合搜索方法的解决方案。这种方法旨在利用矢量搜索的性能潜力,同时保持传统搜索对新领域的适应性。

实现过程

使用支持单一稀疏密集索引的 Pinecone 演示了混合搜索的实施。这种方法简化了结合密集和稀疏搜索引擎所需的工程设计工作,并允许通过 alpha 参数轻松调整密集和稀疏结果之间的权重。

在这里插入图片描述

步骤 1:数据集准备

本博客将介绍如何为混合搜索准备一个数据集(使用 Hugging Face Datasets 的 pubmed_qa 数据集),包括创建数据的密集和稀疏向量表示。

from datasets import load_dataset  # !pip install datasets
pubmed = load_dataset('pubmed_qa','pqa_labeled',split='train'
)
pubmed

数据格式如下所示:

Dataset({ features: ['pubid', 'question', 'context', 'long_answer', 'final_decision'], num_rows: 1000 })

步骤 2:稀疏向量

稀疏向量嵌入是通过标记化逻辑创建的,博客选择了一种使用 Hugging Face Transformers 的 BERT 标记化器的直接方法。

from transformers import BertTokenizerFast  # !pip install transformers# load bert tokenizer from huggingface
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased'
)
# tokenize the context passage
inputs = tokenizer(contexts[0], padding=True, truncation=True,max_length=512
)

由于我们只进行 tokenize,因此需要 input_ids,并将输入 ID 表示转换为整数 ID 值的唯一单词或子词 token。Pinecone 期望接收字典格式的稀疏向量。例如,向量:

[0, 2, 9, 2, 5, 5]
# 将会转换为
{ "0": 1, "2": 2, "5": 2, "9": 1 }

每个 token 由字典中的单个 key 表示,并且其频率由相应的 value 来计数。作者对 input_ids 应用相同的转换,如下所示:

from collections import Counter# convert the input_ids list to a dictionary of key to frequency values
sparse_vec = dict(Counter(input_ids))
sparse_vec
{101: 1, 16984: 1, 3526: 2, 2331: 2, 1006: 10, ... }

可以将所有这些逻辑重新格式化为两个函数:

  • build_dict:将输入 ID 转换为字典;
  • generate_sparse_vectors:处理标记化和字典创建。
def build_dict(input_batch):# store a batch of sparse embeddingssparse_emb = []# iterate through input batchfor token_ids in input_batch:indices = []values = []# convert the input_ids list to a dictionary of key to frequency valuesd = dict(Counter(token_ids))for idx in d:indices.append(idx)values.append(d[idx])sparse_emb.append({'indices': indices, 'values': values})# return sparse_emb listreturn sparse_embdef generate_sparse_vectors(context_batch):# create batch of input_idsinputs = tokenizer(context_batch, padding=True,truncation=True,max_length=512, special_tokens=False)['input_ids']# create sparse dictionariessparse_embeds = build_dict(inputs)return sparse_embeds

generate_sparse_vectors 函数中指定 special_tokens=False 来删除特殊 token 101、102、103和0。这些都是 BERT Transformer 模型明确要求的 token,但在构建稀疏向量时没有任何意义。

步骤 3:密集向量

密集向量嵌入使用 sentence transformer 模型(“multi-qa-MiniLM-L6-cos-v1”)生成,可为每个上下文生成 384 维密集向量。

# !pip install sentence-transformers
from sentence_transformers import SentenceTransformer# load a sentence transformer model from huggingface
model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1'
)emb = model.encode(contexts[0])
emb.shape

步骤 4:创建稀疏密集索引

该博客详细介绍了如何在 Pinecone 中创建和使用稀疏密集索引,包括使用稀疏向量和密集向量倒插数据。

import pinecone  # !pip install pinecone-clientpinecone.init(api_key="YOUR_API_KEY",  # app.pinecone.ioenvironment="YOUR_ENV"  # find next to api key in console
)
# choose a name for your index
index_name = "hybrid-search-intro"# create the index
pinecone.create_index(index_name = index_name,dimension = 384,  # dimensionality of dense modelmetric = "dotproduct",pod_type = "s1"
)

要使用启用稀疏-密集的索引,必须将 pod_type 设置为 s1 或 p1,并将 metric 设置为使用点积。

步骤 5:进行查询

混合搜索中的查询包括查询的密集向量和稀疏向量表示。该博客演示了如何执行查询和调整 alpha 参数,以平衡密集和稀疏搜索结果的影响。

在这里插入图片描述

def hybrid_scale(dense, sparse, alpha: float):# check alpha value is in rangeif alpha < 0 or alpha > 1:raise ValueError("Alpha must be between 0 and 1")# scale sparse and dense vectors to create hybrid search vecshsparse = {'indices': sparse['indices'],'values':  [v * (1 - alpha) for v in sparse['values']]}hdense = [v * alpha for v in dense]return hdense, hsparsedef hybrid_query(question, top_k, alpha):# convert the question into a sparse vectorsparse_vec = generate_sparse_vectors([question])[0]# convert the question into a dense vectordense_vec = model.encode([question]).tolist()# scale alpha with hybrid_scaledense_vec, sparse_vec = hybrid_scale(dense_vec, sparse_vec, alpha)# query pinecone with the query parametersresult = pinecone.query(vector=dense_vec,sparse_vector=sparse_vec[0],top_k=top_k,include_metadata=True)# return search results as jsonreturn result

文章结论

混合搜索通过与传统搜索方法相结合,为克服矢量搜索在域外场景中的局限性提供了一种很有前途的方法。这篇博客为实现混合搜索提供了全面的指导,通过智能地结合矢量和传统搜索方法,强调了混合搜索在改进各领域信息检索方面的潜力。

原始链接

https://www.pinecone.io/learn/hybrid-search-intro/

这篇关于RAG 查询检索模块 - 检索 - Pinecone 混合检索方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039515

相关文章

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

mysql查询使用_rowid虚拟列的示例

《mysql查询使用_rowid虚拟列的示例》MySQL中,_rowid是InnoDB虚拟列,用于无主键表的行ID查询,若存在主键或唯一列,则指向其,否则使用隐藏ID(不稳定),推荐使用ROW_NUM... 目录1. 基本查询(适用于没有主键的表)2. 检查表是否支持 _rowid3. 注意事项4. 最佳实

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现